p立方Dresselhaus项对自旋霍尔效应的影响

IF 0.9 4区 物理与天体物理 Q4 PHYSICS, CONDENSED MATTER
E. Santana-Suárez, F. Mireles
{"title":"p立方Dresselhaus项对自旋霍尔效应的影响","authors":"E. Santana-Suárez, F. Mireles","doi":"10.5488/CMP.26.13504","DOIUrl":null,"url":null,"abstract":"It is well known that the Dresselhaus spin-orbit coupling (SOC) in semiconductor two dimensional electron gases (2DEGs) possesses both linear and cubic in momentum contributions. Nevertheless, the latter is usually neglected in most theoretical studies. However, recent Kerr rotation experiments have revealed a significant enhancement of the cubic Dresselhaus interaction by increasing the drift velocities in 2DEGs hosted in GaAs quantum wells. Here, we present a study of the optical spin Hall conductivity in 2DEGs under the simultaneous presence of Rashba and (linear plus cubic) Dresselhaus SOC. The work was done within the Kubo formalism in linear response. We show that the coexistence of the Rashba and cubic Dresselhaus SOC in 2DEGs promotes a strong anisotropy of the band spin splitting which in turn leads to a very characteristic frequency dependence of the spin Hall conductivity. We find that the spin Hall conductivity response could be very sensible to sizeable cubic-Dresselhaus coupling strength. This may be of relevance for the optical control of spin currents in 2DEGs with non-negligible cubic-Dresselhaus SOC.","PeriodicalId":10528,"journal":{"name":"Condensed Matter Physics","volume":"10 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of the p-cubic Dresselhaus term on the spin Hall effect\",\"authors\":\"E. Santana-Suárez, F. Mireles\",\"doi\":\"10.5488/CMP.26.13504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that the Dresselhaus spin-orbit coupling (SOC) in semiconductor two dimensional electron gases (2DEGs) possesses both linear and cubic in momentum contributions. Nevertheless, the latter is usually neglected in most theoretical studies. However, recent Kerr rotation experiments have revealed a significant enhancement of the cubic Dresselhaus interaction by increasing the drift velocities in 2DEGs hosted in GaAs quantum wells. Here, we present a study of the optical spin Hall conductivity in 2DEGs under the simultaneous presence of Rashba and (linear plus cubic) Dresselhaus SOC. The work was done within the Kubo formalism in linear response. We show that the coexistence of the Rashba and cubic Dresselhaus SOC in 2DEGs promotes a strong anisotropy of the band spin splitting which in turn leads to a very characteristic frequency dependence of the spin Hall conductivity. We find that the spin Hall conductivity response could be very sensible to sizeable cubic-Dresselhaus coupling strength. This may be of relevance for the optical control of spin currents in 2DEGs with non-negligible cubic-Dresselhaus SOC.\",\"PeriodicalId\":10528,\"journal\":{\"name\":\"Condensed Matter Physics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5488/CMP.26.13504\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5488/CMP.26.13504","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,半导体二维电子气体(2DEGs)中的Dresselhaus自旋轨道耦合(SOC)具有线性和立方动量贡献。然而,在大多数理论研究中,后者通常被忽视。然而,最近的Kerr旋转实验表明,通过增加GaAs量子阱中2deg的漂移速度,可以显著增强立方Dresselhaus相互作用。在这里,我们研究了在Rashba和(线性加立方)Dresselhaus SOC同时存在下的2deg光自旋霍尔电导率。这项工作是在久保的线性响应形式下完成的。我们发现Rashba和立方Dresselhaus SOC在2DEGs中的共存促进了带自旋分裂的强各向异性,从而导致自旋霍尔电导率具有非常特征的频率依赖性。我们发现自旋霍尔电导率响应对相当大的立方- dresselhaus耦合强度非常敏感。这可能与具有不可忽略的立方- dresselhaus SOC的2DEGs自旋电流的光学控制有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of the p-cubic Dresselhaus term on the spin Hall effect
It is well known that the Dresselhaus spin-orbit coupling (SOC) in semiconductor two dimensional electron gases (2DEGs) possesses both linear and cubic in momentum contributions. Nevertheless, the latter is usually neglected in most theoretical studies. However, recent Kerr rotation experiments have revealed a significant enhancement of the cubic Dresselhaus interaction by increasing the drift velocities in 2DEGs hosted in GaAs quantum wells. Here, we present a study of the optical spin Hall conductivity in 2DEGs under the simultaneous presence of Rashba and (linear plus cubic) Dresselhaus SOC. The work was done within the Kubo formalism in linear response. We show that the coexistence of the Rashba and cubic Dresselhaus SOC in 2DEGs promotes a strong anisotropy of the band spin splitting which in turn leads to a very characteristic frequency dependence of the spin Hall conductivity. We find that the spin Hall conductivity response could be very sensible to sizeable cubic-Dresselhaus coupling strength. This may be of relevance for the optical control of spin currents in 2DEGs with non-negligible cubic-Dresselhaus SOC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Condensed Matter Physics
Condensed Matter Physics 物理-物理:凝聚态物理
CiteScore
1.10
自引率
16.70%
发文量
17
审稿时长
1 months
期刊介绍: Condensed Matter Physics contains original and review articles in the field of statistical mechanics and thermodynamics of equilibrium and nonequilibrium processes, relativistic mechanics of interacting particle systems.The main attention is paid to physics of solid, liquid and amorphous systems, phase equilibria and phase transitions, thermal, structural, electric, magnetic and optical properties of condensed matter. Condensed Matter Physics is published quarterly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信