优化了均匀纹理缺陷检测的Gabor滤波器参数

Liangzhong Fan, G. Jiang
{"title":"优化了均匀纹理缺陷检测的Gabor滤波器参数","authors":"Liangzhong Fan, G. Jiang","doi":"10.1109/ISKE.2010.5680817","DOIUrl":null,"url":null,"abstract":"The problem of automated defect detection in uniform textured materials is investigated. A new approach for selecting Gabor filter parameters is proposed. The optimized odd symmetric Gabor filter is designed to match with the texture features of defect-free fabric image. The performance of the scheme is evaluated by using an offline test database with 60 uniform texture images. The experimental results exhibit accurate flaw detection with low false alarm. And the effectiveness and robustness of the proposed method are confirmed.","PeriodicalId":6417,"journal":{"name":"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering","volume":"14 1","pages":"173-176"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Optimized Gabor filter parameters for uniform texture flaw detection\",\"authors\":\"Liangzhong Fan, G. Jiang\",\"doi\":\"10.1109/ISKE.2010.5680817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of automated defect detection in uniform textured materials is investigated. A new approach for selecting Gabor filter parameters is proposed. The optimized odd symmetric Gabor filter is designed to match with the texture features of defect-free fabric image. The performance of the scheme is evaluated by using an offline test database with 60 uniform texture images. The experimental results exhibit accurate flaw detection with low false alarm. And the effectiveness and robustness of the proposed method are confirmed.\",\"PeriodicalId\":6417,\"journal\":{\"name\":\"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering\",\"volume\":\"14 1\",\"pages\":\"173-176\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISKE.2010.5680817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE.2010.5680817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

研究了均匀织构材料的自动缺陷检测问题。提出了一种新的Gabor滤波器参数选择方法。针对无缺陷织物图像的纹理特征,设计了优化后的奇对称Gabor滤波器。通过一个包含60张均匀纹理图像的离线测试数据库,对该方案的性能进行了评估。实验结果表明,该方法探伤准确,虚警率低。验证了该方法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized Gabor filter parameters for uniform texture flaw detection
The problem of automated defect detection in uniform textured materials is investigated. A new approach for selecting Gabor filter parameters is proposed. The optimized odd symmetric Gabor filter is designed to match with the texture features of defect-free fabric image. The performance of the scheme is evaluated by using an offline test database with 60 uniform texture images. The experimental results exhibit accurate flaw detection with low false alarm. And the effectiveness and robustness of the proposed method are confirmed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信