A. Souiri, M. Zemzami, Hayat Laatiris, S. Amzazi, M. Ennaji
{"title":"摩洛哥佩皮诺花叶病毒分离株的遗传特征","authors":"A. Souiri, M. Zemzami, Hayat Laatiris, S. Amzazi, M. Ennaji","doi":"10.2174/1874357901913010018","DOIUrl":null,"url":null,"abstract":"\n \n Throughout the past few years, Pepino Mosaic Virus (PepMV) has rapidly evolved from an emerging virus to endemic pathogen that causes significant losses in tomato crops worldwide. Reliable detection and molecular characterization are very important tools to support disease control. Cross-protection can also be an effective strategy, but the efficacy depends strongly on the genotype. The genetic composition of the PepMV population in Morocco has not yet been determined.\n \n \n \n The current study aims to genetically characterize twelve PepMV isolates (PepMV-MA), all from different Moroccan tomato production areas, by analyzing nucleotide sequences of a part of the RNA-dependent RNA polymerase (RdRp), Triple Gene Block (TGB) and Coat Protein (CP) genes.\n \n \n \n The sequence analysis of the twelve PepMV-MA isolates shows minor nucleotide differences between them, which implies a homogenous population. The phylogenetic analysis, based on the comparison with the major genotypes, showed that Moroccan PepMV populations share a very high sequence identity, 98%, with the Chilean strain (CH2), while the shared identity with the European strains (EU) is only 85%. Interestingly, Moroccan isolates reveal specific single nucleotide polymorphisms, some of which lead to amino acids changes. These mutations have never been described before, suggesting distinct variants that may enhance aggressiveness and symptomatology.\n \n \n \n Our careful sequence analysis and genotype determination, which placing homogenous Moroccan PepMV strains into CH2 genotype, would be a prerequisite for deploying effective cross-protection strategies for controlling the pathogen in the field.\n","PeriodicalId":23111,"journal":{"name":"The Open Virology Journal","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Genetic Characterization of Pepino Mosaic Virus Isolates from Morocco\",\"authors\":\"A. Souiri, M. Zemzami, Hayat Laatiris, S. Amzazi, M. Ennaji\",\"doi\":\"10.2174/1874357901913010018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Throughout the past few years, Pepino Mosaic Virus (PepMV) has rapidly evolved from an emerging virus to endemic pathogen that causes significant losses in tomato crops worldwide. Reliable detection and molecular characterization are very important tools to support disease control. Cross-protection can also be an effective strategy, but the efficacy depends strongly on the genotype. The genetic composition of the PepMV population in Morocco has not yet been determined.\\n \\n \\n \\n The current study aims to genetically characterize twelve PepMV isolates (PepMV-MA), all from different Moroccan tomato production areas, by analyzing nucleotide sequences of a part of the RNA-dependent RNA polymerase (RdRp), Triple Gene Block (TGB) and Coat Protein (CP) genes.\\n \\n \\n \\n The sequence analysis of the twelve PepMV-MA isolates shows minor nucleotide differences between them, which implies a homogenous population. The phylogenetic analysis, based on the comparison with the major genotypes, showed that Moroccan PepMV populations share a very high sequence identity, 98%, with the Chilean strain (CH2), while the shared identity with the European strains (EU) is only 85%. Interestingly, Moroccan isolates reveal specific single nucleotide polymorphisms, some of which lead to amino acids changes. These mutations have never been described before, suggesting distinct variants that may enhance aggressiveness and symptomatology.\\n \\n \\n \\n Our careful sequence analysis and genotype determination, which placing homogenous Moroccan PepMV strains into CH2 genotype, would be a prerequisite for deploying effective cross-protection strategies for controlling the pathogen in the field.\\n\",\"PeriodicalId\":23111,\"journal\":{\"name\":\"The Open Virology Journal\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Open Virology Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874357901913010018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Virology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874357901913010018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genetic Characterization of Pepino Mosaic Virus Isolates from Morocco
Throughout the past few years, Pepino Mosaic Virus (PepMV) has rapidly evolved from an emerging virus to endemic pathogen that causes significant losses in tomato crops worldwide. Reliable detection and molecular characterization are very important tools to support disease control. Cross-protection can also be an effective strategy, but the efficacy depends strongly on the genotype. The genetic composition of the PepMV population in Morocco has not yet been determined.
The current study aims to genetically characterize twelve PepMV isolates (PepMV-MA), all from different Moroccan tomato production areas, by analyzing nucleotide sequences of a part of the RNA-dependent RNA polymerase (RdRp), Triple Gene Block (TGB) and Coat Protein (CP) genes.
The sequence analysis of the twelve PepMV-MA isolates shows minor nucleotide differences between them, which implies a homogenous population. The phylogenetic analysis, based on the comparison with the major genotypes, showed that Moroccan PepMV populations share a very high sequence identity, 98%, with the Chilean strain (CH2), while the shared identity with the European strains (EU) is only 85%. Interestingly, Moroccan isolates reveal specific single nucleotide polymorphisms, some of which lead to amino acids changes. These mutations have never been described before, suggesting distinct variants that may enhance aggressiveness and symptomatology.
Our careful sequence analysis and genotype determination, which placing homogenous Moroccan PepMV strains into CH2 genotype, would be a prerequisite for deploying effective cross-protection strategies for controlling the pathogen in the field.