{"title":"提出了将分布式绕线定子铁芯的设计理念与制造工艺选择相结合的方法","authors":"D. Ogilvie, S. Ratchev, C. Gerada, S. Grace","doi":"10.1109/IEMDC.2015.7409230","DOIUrl":null,"url":null,"abstract":"Current induction motor designs account for the majority of the motors used in the world today. However, their designs have not evolved to the extent to which permanent magnet machines have within the automotive and industrial sectors. Current methods of assembling distributed wound stator cores have the known issues of high process scrap, low slot fill and winding quality issues caused by assembly tooling. Design for Manufacturing and Assembly (DFMA) can remove these manufacturing issues but there is a conflict between DFMA and motor performance. By quantitatively assessing conventional and novel stator core design features and the available manufacturing technologies, this paper proposes a method of motor component design and process selection which enables multiple novel component design features to be effectively combined and assessed for their manufacturability and their electromagnetic performance. Using this methodology, this paper also shows that there are clear limitations to the current manufacturing technology used for stator core production.","PeriodicalId":6477,"journal":{"name":"2015 IEEE International Electric Machines & Drives Conference (IEMDC)","volume":"188 1","pages":"1305-1311"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proposed methodology to combine design concept and manufacturing process selection for distributed wound stator cores\",\"authors\":\"D. Ogilvie, S. Ratchev, C. Gerada, S. Grace\",\"doi\":\"10.1109/IEMDC.2015.7409230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current induction motor designs account for the majority of the motors used in the world today. However, their designs have not evolved to the extent to which permanent magnet machines have within the automotive and industrial sectors. Current methods of assembling distributed wound stator cores have the known issues of high process scrap, low slot fill and winding quality issues caused by assembly tooling. Design for Manufacturing and Assembly (DFMA) can remove these manufacturing issues but there is a conflict between DFMA and motor performance. By quantitatively assessing conventional and novel stator core design features and the available manufacturing technologies, this paper proposes a method of motor component design and process selection which enables multiple novel component design features to be effectively combined and assessed for their manufacturability and their electromagnetic performance. Using this methodology, this paper also shows that there are clear limitations to the current manufacturing technology used for stator core production.\",\"PeriodicalId\":6477,\"journal\":{\"name\":\"2015 IEEE International Electric Machines & Drives Conference (IEMDC)\",\"volume\":\"188 1\",\"pages\":\"1305-1311\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Electric Machines & Drives Conference (IEMDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMDC.2015.7409230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electric Machines & Drives Conference (IEMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC.2015.7409230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proposed methodology to combine design concept and manufacturing process selection for distributed wound stator cores
Current induction motor designs account for the majority of the motors used in the world today. However, their designs have not evolved to the extent to which permanent magnet machines have within the automotive and industrial sectors. Current methods of assembling distributed wound stator cores have the known issues of high process scrap, low slot fill and winding quality issues caused by assembly tooling. Design for Manufacturing and Assembly (DFMA) can remove these manufacturing issues but there is a conflict between DFMA and motor performance. By quantitatively assessing conventional and novel stator core design features and the available manufacturing technologies, this paper proposes a method of motor component design and process selection which enables multiple novel component design features to be effectively combined and assessed for their manufacturability and their electromagnetic performance. Using this methodology, this paper also shows that there are clear limitations to the current manufacturing technology used for stator core production.