{"title":"一种实时多光谱鲁棒行人检测算法","authors":"Vu Hiep Dao, Hieu Mac, Duc Tran","doi":"10.1109/RIVF51545.2021.9642066","DOIUrl":null,"url":null,"abstract":"Low light conditions are known to create a notable challenge to the applicability of deep learning in a wide variety of computer vision applications. In this paper, we develop a detection method for real-time multispectral pedestrians that fuses color image (i.e., red-green-blue or RBG) with thermal image to provide a reliable object vision. Such combination is achieved using the confidence scores that are computed based on the illumination measure of a given input image. We evaluate the proposed algorithm on KAIST dataset. Such method is observed to give a 34.11% Log Average Miss Rate, operate in real-time, and thus, being ready to deploy in practice.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"18 4 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Real-time Multispectral Algorithm for Robust Pedestrian Detection\",\"authors\":\"Vu Hiep Dao, Hieu Mac, Duc Tran\",\"doi\":\"10.1109/RIVF51545.2021.9642066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low light conditions are known to create a notable challenge to the applicability of deep learning in a wide variety of computer vision applications. In this paper, we develop a detection method for real-time multispectral pedestrians that fuses color image (i.e., red-green-blue or RBG) with thermal image to provide a reliable object vision. Such combination is achieved using the confidence scores that are computed based on the illumination measure of a given input image. We evaluate the proposed algorithm on KAIST dataset. Such method is observed to give a 34.11% Log Average Miss Rate, operate in real-time, and thus, being ready to deploy in practice.\",\"PeriodicalId\":6860,\"journal\":{\"name\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"volume\":\"18 4 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF51545.2021.9642066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF51545.2021.9642066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Real-time Multispectral Algorithm for Robust Pedestrian Detection
Low light conditions are known to create a notable challenge to the applicability of deep learning in a wide variety of computer vision applications. In this paper, we develop a detection method for real-time multispectral pedestrians that fuses color image (i.e., red-green-blue or RBG) with thermal image to provide a reliable object vision. Such combination is achieved using the confidence scores that are computed based on the illumination measure of a given input image. We evaluate the proposed algorithm on KAIST dataset. Such method is observed to give a 34.11% Log Average Miss Rate, operate in real-time, and thus, being ready to deploy in practice.