{"title":"团数为4的有限局部环上","authors":"Qiong Liu, Tongsuo Wu, Jin Guo","doi":"10.1142/s1005386722000037","DOIUrl":null,"url":null,"abstract":"We study the algebraic structure of rings [Formula: see text] whose zero-divisor graph [Formula: see text]has clique number four. Furthermore, we give complete characterizations of all the finite commutative local rings with clique number 4.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Finite Local Rings with Clique Number Four\",\"authors\":\"Qiong Liu, Tongsuo Wu, Jin Guo\",\"doi\":\"10.1142/s1005386722000037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the algebraic structure of rings [Formula: see text] whose zero-divisor graph [Formula: see text]has clique number four. Furthermore, we give complete characterizations of all the finite commutative local rings with clique number 4.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386722000037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study the algebraic structure of rings [Formula: see text] whose zero-divisor graph [Formula: see text]has clique number four. Furthermore, we give complete characterizations of all the finite commutative local rings with clique number 4.