{"title":"关于动力摩尔谱的评述。","authors":"O. Röndigs","doi":"10.1090/CONM/745/15026","DOIUrl":null,"url":null,"abstract":"The term \"motivic Moore spectrum\" refers to a cone of an element in the motivic stable homotopy groups of spheres. This article discusses some properties of motivic Moore spectra, among them the question whether the ring structure on the motivic sphere spectrum descends to a ring structure on a motivic Moore spectrum. This discussion requires an understanding of some Toda brackets in the motivic stable homotopy groups of spheres.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Remarks on motivic Moore spectra.\",\"authors\":\"O. Röndigs\",\"doi\":\"10.1090/CONM/745/15026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The term \\\"motivic Moore spectrum\\\" refers to a cone of an element in the motivic stable homotopy groups of spheres. This article discusses some properties of motivic Moore spectra, among them the question whether the ring structure on the motivic sphere spectrum descends to a ring structure on a motivic Moore spectrum. This discussion requires an understanding of some Toda brackets in the motivic stable homotopy groups of spheres.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/CONM/745/15026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/CONM/745/15026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The term "motivic Moore spectrum" refers to a cone of an element in the motivic stable homotopy groups of spheres. This article discusses some properties of motivic Moore spectra, among them the question whether the ring structure on the motivic sphere spectrum descends to a ring structure on a motivic Moore spectrum. This discussion requires an understanding of some Toda brackets in the motivic stable homotopy groups of spheres.