{"title":"基于多维有限元法的风电齿轮系统疲劳可靠性评估方法","authors":"Ming Li, Yuan Luo, L. Xie, Cao Tong, Chuan Chen","doi":"10.1177/1748006x231164723","DOIUrl":null,"url":null,"abstract":"As a core strategic technology industry, the wind power plays an important role in protecting national energy reserves. The large gear component is one of the core foundation parts in wind turbines, and its quality indexes greatly affect the service performance of the wind turbine drive chain and even the wind turbine as a whole. This paper calculates the fatigue load history of the wind power large gear system under the coupling mechanism of elastic behavior based on a multidimensional finite element method, and obtains the probabilistic fatigue strength of gear teeth through the gear low circumference fatigue test and life distribution transformation method, and deeply explores the inherent characteristics of the wind power gear system in functional implementation and then establishes a system fatigue reliability evaluation model. Finally, a mapping path from the global structural elements of the wind power gearbox to the reliability indexes of the gear system is constructed with significant simulation and test cost advantages. It can provide structural optimization guidance in the development and design of large wind power gear systems, and significantly reduce the cost of achieving reliability indexes in the design iterations of such large high-end equipment. At the same time, it can provide cost-effective training data for intelligent optimization algorithms such as the deep reinforcement learning, which will eventually achieve multi-objective optimal stiffness matching for wind power gearboxes under reliability index constraints.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatigue reliability assessment method for wind power gear system based on multidimensional finite element method\",\"authors\":\"Ming Li, Yuan Luo, L. Xie, Cao Tong, Chuan Chen\",\"doi\":\"10.1177/1748006x231164723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a core strategic technology industry, the wind power plays an important role in protecting national energy reserves. The large gear component is one of the core foundation parts in wind turbines, and its quality indexes greatly affect the service performance of the wind turbine drive chain and even the wind turbine as a whole. This paper calculates the fatigue load history of the wind power large gear system under the coupling mechanism of elastic behavior based on a multidimensional finite element method, and obtains the probabilistic fatigue strength of gear teeth through the gear low circumference fatigue test and life distribution transformation method, and deeply explores the inherent characteristics of the wind power gear system in functional implementation and then establishes a system fatigue reliability evaluation model. Finally, a mapping path from the global structural elements of the wind power gearbox to the reliability indexes of the gear system is constructed with significant simulation and test cost advantages. It can provide structural optimization guidance in the development and design of large wind power gear systems, and significantly reduce the cost of achieving reliability indexes in the design iterations of such large high-end equipment. At the same time, it can provide cost-effective training data for intelligent optimization algorithms such as the deep reinforcement learning, which will eventually achieve multi-objective optimal stiffness matching for wind power gearboxes under reliability index constraints.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1748006x231164723\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1748006x231164723","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Fatigue reliability assessment method for wind power gear system based on multidimensional finite element method
As a core strategic technology industry, the wind power plays an important role in protecting national energy reserves. The large gear component is one of the core foundation parts in wind turbines, and its quality indexes greatly affect the service performance of the wind turbine drive chain and even the wind turbine as a whole. This paper calculates the fatigue load history of the wind power large gear system under the coupling mechanism of elastic behavior based on a multidimensional finite element method, and obtains the probabilistic fatigue strength of gear teeth through the gear low circumference fatigue test and life distribution transformation method, and deeply explores the inherent characteristics of the wind power gear system in functional implementation and then establishes a system fatigue reliability evaluation model. Finally, a mapping path from the global structural elements of the wind power gearbox to the reliability indexes of the gear system is constructed with significant simulation and test cost advantages. It can provide structural optimization guidance in the development and design of large wind power gear systems, and significantly reduce the cost of achieving reliability indexes in the design iterations of such large high-end equipment. At the same time, it can provide cost-effective training data for intelligent optimization algorithms such as the deep reinforcement learning, which will eventually achieve multi-objective optimal stiffness matching for wind power gearboxes under reliability index constraints.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.