一类具有积分边界条件的非线性分数阶微分方程解的存在性

Meng Hu, Lili Wang
{"title":"一类具有积分边界条件的非线性分数阶微分方程解的存在性","authors":"Meng Hu, Lili Wang","doi":"10.5281/ZENODO.1085182","DOIUrl":null,"url":null,"abstract":"This paper deals with a nonlinear fractional differential equation with integral boundary condition of the following form: Dαt x(t) = f(t, x(t),Dβ t x(t)), t ∈ (0, 1), x(0) = 0, x(1) = 1 0 g(s)x(s)ds, where 1 < α ≤ 2, 0 < β < 1. Our results are based on the Schauder fixed point theorem and the Banach contraction principle.","PeriodicalId":23764,"journal":{"name":"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering","volume":"89 1","pages":"55-58"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Existence Of Solutions For A Nonlinear Fractional Differential Equation With Integral Boundary Condition\",\"authors\":\"Meng Hu, Lili Wang\",\"doi\":\"10.5281/ZENODO.1085182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with a nonlinear fractional differential equation with integral boundary condition of the following form: Dαt x(t) = f(t, x(t),Dβ t x(t)), t ∈ (0, 1), x(0) = 0, x(1) = 1 0 g(s)x(s)ds, where 1 < α ≤ 2, 0 < β < 1. Our results are based on the Schauder fixed point theorem and the Banach contraction principle.\",\"PeriodicalId\":23764,\"journal\":{\"name\":\"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering\",\"volume\":\"89 1\",\"pages\":\"55-58\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.1085182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.1085182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文研究了一类非线性分数阶微分方程,其积分边界条件为:Dαt x(t) = f(t, x(t),Dβ t x(t)), t∈(0,1),x(0) = 0, x(1) = 10g (s)x(s)ds,其中1 < α≤2,0 < β < 1。我们的结果是基于Schauder不动点定理和Banach收缩原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence Of Solutions For A Nonlinear Fractional Differential Equation With Integral Boundary Condition
This paper deals with a nonlinear fractional differential equation with integral boundary condition of the following form: Dαt x(t) = f(t, x(t),Dβ t x(t)), t ∈ (0, 1), x(0) = 0, x(1) = 1 0 g(s)x(s)ds, where 1 < α ≤ 2, 0 < β < 1. Our results are based on the Schauder fixed point theorem and the Banach contraction principle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信