多人口死亡率预测:具有结构断裂的增强型公因子模型

Pengjie Wang, A. Pantelous, Farshid Vahid
{"title":"多人口死亡率预测:具有结构断裂的增强型公因子模型","authors":"Pengjie Wang, A. Pantelous, Farshid Vahid","doi":"10.2139/ssrn.3614333","DOIUrl":null,"url":null,"abstract":"Multi-population mortality forecasting has become an increasingly important area in actuarial science and demography, as a means to avoid long-run divergence in mortality projection. This paper aims to establish a unified state-space Bayesian framework to model, estimate and forecast mortality rates in a multi-population context. In this regard, we reformulate the augmented common factor model to account for structural breaks in the mortality indexes. Further, we conduct a Bayesian analysis to make inferences and generate forecasts so that process, parameter and model uncertainties can be considered simultaneously and appropriately. The square-root-form of the Kalman Filter is exploited to improve robustness when sampling latent states. We illustrate the efficiency of our methodology through two distinctive case studies. The first uses Australian two-gender mortality data. The second projects mortality for a list of selected Eurozone countries, where the hierarchical clustering approach on principal components is utilised to group countries with similar mortality characteristics together. Both point and probabilistic forecast evaluations are considered in the empirical analysis. The derived results support the fact that the incorporation of stochastic drifts mitigates the impact of the structural change in the time indexes on mortality projection.","PeriodicalId":82443,"journal":{"name":"Real property, probate, and trust journal","volume":"113 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi-population Mortality Projection: The Augmented Common Factor Model with Structural Breaks\",\"authors\":\"Pengjie Wang, A. Pantelous, Farshid Vahid\",\"doi\":\"10.2139/ssrn.3614333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-population mortality forecasting has become an increasingly important area in actuarial science and demography, as a means to avoid long-run divergence in mortality projection. This paper aims to establish a unified state-space Bayesian framework to model, estimate and forecast mortality rates in a multi-population context. In this regard, we reformulate the augmented common factor model to account for structural breaks in the mortality indexes. Further, we conduct a Bayesian analysis to make inferences and generate forecasts so that process, parameter and model uncertainties can be considered simultaneously and appropriately. The square-root-form of the Kalman Filter is exploited to improve robustness when sampling latent states. We illustrate the efficiency of our methodology through two distinctive case studies. The first uses Australian two-gender mortality data. The second projects mortality for a list of selected Eurozone countries, where the hierarchical clustering approach on principal components is utilised to group countries with similar mortality characteristics together. Both point and probabilistic forecast evaluations are considered in the empirical analysis. The derived results support the fact that the incorporation of stochastic drifts mitigates the impact of the structural change in the time indexes on mortality projection.\",\"PeriodicalId\":82443,\"journal\":{\"name\":\"Real property, probate, and trust journal\",\"volume\":\"113 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Real property, probate, and trust journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3614333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real property, probate, and trust journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3614333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

多人口死亡率预测作为避免死亡率预测长期偏差的一种手段,已成为精算科学和人口统计学中日益重要的研究领域。本文旨在建立一个统一的状态空间贝叶斯框架来建模、估计和预测多种群背景下的死亡率。在这方面,我们重新制定增强型共同因素模型,以考虑死亡率指数的结构性断裂。此外,我们通过贝叶斯分析进行推断和预测,使过程、参数和模型的不确定性可以同时适当地考虑。利用卡尔曼滤波器的平方根形式来提高采样潜在状态时的鲁棒性。我们通过两个不同的案例研究来说明我们方法的有效性。第一项研究使用了澳大利亚两性死亡率数据。第二个项目是选定的欧元区国家的死亡率,其中使用主成分的分层聚类方法将死亡率特征相似的国家分组在一起。在实证分析中考虑了点预测评价和概率预测评价。结果表明,随机漂移的引入可以缓解时间指标结构变化对死亡率预测的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-population Mortality Projection: The Augmented Common Factor Model with Structural Breaks
Multi-population mortality forecasting has become an increasingly important area in actuarial science and demography, as a means to avoid long-run divergence in mortality projection. This paper aims to establish a unified state-space Bayesian framework to model, estimate and forecast mortality rates in a multi-population context. In this regard, we reformulate the augmented common factor model to account for structural breaks in the mortality indexes. Further, we conduct a Bayesian analysis to make inferences and generate forecasts so that process, parameter and model uncertainties can be considered simultaneously and appropriately. The square-root-form of the Kalman Filter is exploited to improve robustness when sampling latent states. We illustrate the efficiency of our methodology through two distinctive case studies. The first uses Australian two-gender mortality data. The second projects mortality for a list of selected Eurozone countries, where the hierarchical clustering approach on principal components is utilised to group countries with similar mortality characteristics together. Both point and probabilistic forecast evaluations are considered in the empirical analysis. The derived results support the fact that the incorporation of stochastic drifts mitigates the impact of the structural change in the time indexes on mortality projection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信