正交范围搜索在计算巨图直径中的新应用

G. Ducoffe
{"title":"正交范围搜索在计算巨图直径中的新应用","authors":"G. Ducoffe","doi":"10.4230/OASIcs.SOSA.2019.12","DOIUrl":null,"url":null,"abstract":"A well-known problem for which it is difficult to improve the textbook algorithm is computing the graph diameter. We present two versions of a simple algorithm (one being Monte Carlo and the other deterministic) that for every fixed h and unweighted undirected graph G with n vertices and m edges, either correctly concludes that diam(G) < hn or outputs diam(G), in time O(m + n1+o(1)). The algorithm combines a simple randomized strategy for this problem (Damaschke, IWOCA’16) with a popular framework for computing graph distances that is based on range trees (Cabello and Knauer, Computational Geometry’09). We also prove that under the Strong Exponential Time Hypothesis (SETH), we cannot compute the diameter of a given n-vertex graph in truly subquadratic time, even if the diameter is an Θ(n/ log n). 2012 ACM Subject Classification Theory of computation → Shortest paths, Theory of computation → Problems, reductions and completeness","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"15 1","pages":"12:1-12:7"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A New Application of Orthogonal Range Searching for Computing Giant Graph Diameters\",\"authors\":\"G. Ducoffe\",\"doi\":\"10.4230/OASIcs.SOSA.2019.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A well-known problem for which it is difficult to improve the textbook algorithm is computing the graph diameter. We present two versions of a simple algorithm (one being Monte Carlo and the other deterministic) that for every fixed h and unweighted undirected graph G with n vertices and m edges, either correctly concludes that diam(G) < hn or outputs diam(G), in time O(m + n1+o(1)). The algorithm combines a simple randomized strategy for this problem (Damaschke, IWOCA’16) with a popular framework for computing graph distances that is based on range trees (Cabello and Knauer, Computational Geometry’09). We also prove that under the Strong Exponential Time Hypothesis (SETH), we cannot compute the diameter of a given n-vertex graph in truly subquadratic time, even if the diameter is an Θ(n/ log n). 2012 ACM Subject Classification Theory of computation → Shortest paths, Theory of computation → Problems, reductions and completeness\",\"PeriodicalId\":93491,\"journal\":{\"name\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"volume\":\"15 1\",\"pages\":\"12:1-12:7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/OASIcs.SOSA.2019.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/OASIcs.SOSA.2019.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

一个众所周知的难以改进教科书算法的问题是计算图的直径。我们提出了一个简单算法的两个版本(一个是蒙特卡罗的,另一个是确定性的),对于每个固定的h和n个顶点和m条边的未加权无向图G,正确地得出diam(G) < hn或输出diam(G),在时间O(m + n1+ O(1))。该算法结合了针对该问题的简单随机策略(Damaschke, IWOCA ' 16)和基于范围树的计算图距离的流行框架(Cabello和Knauer, Computational Geometry ' 09)。我们还证明了在强指数时间假设(SETH)下,我们不能在真正的次二次时间内计算给定的n顶点图的直径,即使直径是Θ(n/ log n)。2012 ACM主题分类计算理论→最短路径,计算理论→问题,约简和完备性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Application of Orthogonal Range Searching for Computing Giant Graph Diameters
A well-known problem for which it is difficult to improve the textbook algorithm is computing the graph diameter. We present two versions of a simple algorithm (one being Monte Carlo and the other deterministic) that for every fixed h and unweighted undirected graph G with n vertices and m edges, either correctly concludes that diam(G) < hn or outputs diam(G), in time O(m + n1+o(1)). The algorithm combines a simple randomized strategy for this problem (Damaschke, IWOCA’16) with a popular framework for computing graph distances that is based on range trees (Cabello and Knauer, Computational Geometry’09). We also prove that under the Strong Exponential Time Hypothesis (SETH), we cannot compute the diameter of a given n-vertex graph in truly subquadratic time, even if the diameter is an Θ(n/ log n). 2012 ACM Subject Classification Theory of computation → Shortest paths, Theory of computation → Problems, reductions and completeness
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信