三角分类上的平衡对

Pub Date : 2021-09-02 DOI:10.1142/s1005386723000329
X. Fu, Jiangsheng Hu, Dongdong Zhang, Hai-yan Zhu
{"title":"三角分类上的平衡对","authors":"X. Fu, Jiangsheng Hu, Dongdong Zhang, Hai-yan Zhu","doi":"10.1142/s1005386723000329","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a triangulated category. We first introduce the notion of balanced pairs in [Formula: see text], and then establish the bijective correspondence between balanced pairs and proper classes [Formula: see text] with enough [Formula: see text]-projectives and [Formula: see text]-injectives. Assume that [Formula: see text] is the proper class induced by a balanced pair [Formula: see text]. We prove that [Formula: see text] is an extriangulated category. Moreover, it is proved that [Formula: see text] is a triangulated category if and only if [Formula: see text], and that [Formula: see text] is an exact category if and only if [Formula: see text]. As an application, we produce a large variety of examples of extriangulated categories which are neither exact nor triangulated.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Balanced Pairs on Triangulated Categories\",\"authors\":\"X. Fu, Jiangsheng Hu, Dongdong Zhang, Hai-yan Zhu\",\"doi\":\"10.1142/s1005386723000329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be a triangulated category. We first introduce the notion of balanced pairs in [Formula: see text], and then establish the bijective correspondence between balanced pairs and proper classes [Formula: see text] with enough [Formula: see text]-projectives and [Formula: see text]-injectives. Assume that [Formula: see text] is the proper class induced by a balanced pair [Formula: see text]. We prove that [Formula: see text] is an extriangulated category. Moreover, it is proved that [Formula: see text] is a triangulated category if and only if [Formula: see text], and that [Formula: see text] is an exact category if and only if [Formula: see text]. As an application, we produce a large variety of examples of extriangulated categories which are neither exact nor triangulated.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386723000329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386723000329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设[公式:见文本]为一个三角分类。我们首先在[公式:见文]中引入平衡对的概念,然后用足够的[公式:见文]-投射和[公式:见文]-注入建立平衡对与固有类[公式:见文]之间的双射对应关系。假设[公式:见文]是由平衡对[公式:见文]诱导的适当类。我们证明[公式:见文本]是一个三角化范畴。进一步证明了[公式:见文]是一个三角化范畴当且仅当[公式:见文],且[公式:见文]是一个精确范畴当且仅当[公式:见文]。作为一种应用,我们提出了大量既不精确也不三角化的外三角化类别的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Balanced Pairs on Triangulated Categories
Let [Formula: see text] be a triangulated category. We first introduce the notion of balanced pairs in [Formula: see text], and then establish the bijective correspondence between balanced pairs and proper classes [Formula: see text] with enough [Formula: see text]-projectives and [Formula: see text]-injectives. Assume that [Formula: see text] is the proper class induced by a balanced pair [Formula: see text]. We prove that [Formula: see text] is an extriangulated category. Moreover, it is proved that [Formula: see text] is a triangulated category if and only if [Formula: see text], and that [Formula: see text] is an exact category if and only if [Formula: see text]. As an application, we produce a large variety of examples of extriangulated categories which are neither exact nor triangulated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信