Banach空间上多值线性算子的弱不变子空间

G. Wanjala
{"title":"Banach空间上多值线性算子的弱不变子空间","authors":"G. Wanjala","doi":"10.22436/JNSA.011.07.01","DOIUrl":null,"url":null,"abstract":"Peter Saveliev generalized Lomonosov’s invariant subspace theorem to the case of linear relations. In particular, he proved that if S and T are linear relations defined on a Banach space X and having finite dimensional multivalued parts and if T right commutes with S, that is, ST ⊂ TS, and if S is compact then T has a nontrivial weakly invariant subspace. However, the case of left commutativity remained open. In this paper, we develop some operator representation techniques for linear relations and use them to solve the left commutativity case mentioned above under the assumption that ST(0) = S(0) and TS(0) = T(0).","PeriodicalId":22770,"journal":{"name":"The Journal of Nonlinear Sciences and Applications","volume":"87 1","pages":"877-884"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weakly invariant subspaces for multivalued linear operators on Banach spaces\",\"authors\":\"G. Wanjala\",\"doi\":\"10.22436/JNSA.011.07.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Peter Saveliev generalized Lomonosov’s invariant subspace theorem to the case of linear relations. In particular, he proved that if S and T are linear relations defined on a Banach space X and having finite dimensional multivalued parts and if T right commutes with S, that is, ST ⊂ TS, and if S is compact then T has a nontrivial weakly invariant subspace. However, the case of left commutativity remained open. In this paper, we develop some operator representation techniques for linear relations and use them to solve the left commutativity case mentioned above under the assumption that ST(0) = S(0) and TS(0) = T(0).\",\"PeriodicalId\":22770,\"journal\":{\"name\":\"The Journal of Nonlinear Sciences and Applications\",\"volume\":\"87 1\",\"pages\":\"877-884\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Nonlinear Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22436/JNSA.011.07.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Nonlinear Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/JNSA.011.07.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Peter Saveliev将Lomonosov不变子空间定理推广到线性关系。特别地,他证明了如果S和T是定义在巴拿赫空间X上具有有限维多值部分的线性关系,如果T与S右交换,即ST∧TS,如果S是紧的,则T有一个非平凡的弱不变子空间。然而,左交换性的情况仍然没有解决。本文发展了一些线性关系的算子表示技术,并在ST(0) = S(0)和TS(0) = T(0)的假设下,用它们解决了上述左交换性情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weakly invariant subspaces for multivalued linear operators on Banach spaces
Peter Saveliev generalized Lomonosov’s invariant subspace theorem to the case of linear relations. In particular, he proved that if S and T are linear relations defined on a Banach space X and having finite dimensional multivalued parts and if T right commutes with S, that is, ST ⊂ TS, and if S is compact then T has a nontrivial weakly invariant subspace. However, the case of left commutativity remained open. In this paper, we develop some operator representation techniques for linear relations and use them to solve the left commutativity case mentioned above under the assumption that ST(0) = S(0) and TS(0) = T(0).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信