设计一个能发电的亭子

IF 0.5 0 ARCHITECTURE
Y. Yi, Keunhyuk Jang, Andrew Chun-An Wei, Bhujon Kang, Manal Anis
{"title":"设计一个能发电的亭子","authors":"Y. Yi, Keunhyuk Jang, Andrew Chun-An Wei, Bhujon Kang, Manal Anis","doi":"10.1080/24751448.2022.2040308","DOIUrl":null,"url":null,"abstract":"This paper demonstrates a design method that integrates various computational tools such as Rhinoceros, the artificial neural network from MATLAB, and computational fluid dynamics from Eddy3D to search for the optimal aerodynamic geometries for a wind turbine. It introduces a site-specific microclimate analysis method that can maximize site-specific wind energy potential. Through the integration of computational fluid dynamics (CFD) and artificial neural networks (ANN), the study was able to find the optimized shape to maximize the wind potential for the specific test site. These ANN models use fewer computational resources and less time with reasonable average regression values up to 0.96. The result shows improvement of the annual hourly wind speed around the wind turbine up to 13.24 m/s. It would be beneficial to test the proposed method with actual performance to improve the proposed method.","PeriodicalId":36812,"journal":{"name":"Technology Architecture and Design","volume":"111 1","pages":"100 - 115"},"PeriodicalIF":0.5000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing a Pavilion that Generates Electricity\",\"authors\":\"Y. Yi, Keunhyuk Jang, Andrew Chun-An Wei, Bhujon Kang, Manal Anis\",\"doi\":\"10.1080/24751448.2022.2040308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates a design method that integrates various computational tools such as Rhinoceros, the artificial neural network from MATLAB, and computational fluid dynamics from Eddy3D to search for the optimal aerodynamic geometries for a wind turbine. It introduces a site-specific microclimate analysis method that can maximize site-specific wind energy potential. Through the integration of computational fluid dynamics (CFD) and artificial neural networks (ANN), the study was able to find the optimized shape to maximize the wind potential for the specific test site. These ANN models use fewer computational resources and less time with reasonable average regression values up to 0.96. The result shows improvement of the annual hourly wind speed around the wind turbine up to 13.24 m/s. It would be beneficial to test the proposed method with actual performance to improve the proposed method.\",\"PeriodicalId\":36812,\"journal\":{\"name\":\"Technology Architecture and Design\",\"volume\":\"111 1\",\"pages\":\"100 - 115\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technology Architecture and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24751448.2022.2040308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology Architecture and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24751448.2022.2040308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

本文展示了一种集成了Rhinoceros、MATLAB人工神经网络和Eddy3D计算流体力学等多种计算工具的设计方法,以寻找风力机的最佳气动几何形状。介绍了一种能最大限度地发挥场地风能潜力的场地微气候分析方法。通过计算流体力学(CFD)和人工神经网络(ANN)的集成,该研究能够找到优化的形状,以最大限度地提高特定测试场地的风势。这些人工神经网络模型使用较少的计算资源和较少的时间,平均回归值达到合理的0.96。结果表明,风力机周围的年时风速提高了13.24 m/s。对所提出的方法进行实际性能测试,有利于改进所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing a Pavilion that Generates Electricity
This paper demonstrates a design method that integrates various computational tools such as Rhinoceros, the artificial neural network from MATLAB, and computational fluid dynamics from Eddy3D to search for the optimal aerodynamic geometries for a wind turbine. It introduces a site-specific microclimate analysis method that can maximize site-specific wind energy potential. Through the integration of computational fluid dynamics (CFD) and artificial neural networks (ANN), the study was able to find the optimized shape to maximize the wind potential for the specific test site. These ANN models use fewer computational resources and less time with reasonable average regression values up to 0.96. The result shows improvement of the annual hourly wind speed around the wind turbine up to 13.24 m/s. It would be beneficial to test the proposed method with actual performance to improve the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Technology Architecture and Design
Technology Architecture and Design Arts and Humanities-Visual Arts and Performing Arts
CiteScore
1.30
自引率
0.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信