具有耗散系数意义的参数为负值时rabinovitch - fabrikant系统的动力学及其广义模型

IF 0.5 Q4 PHYSICS, MULTIDISCIPLINARY
L. Turukina
{"title":"具有耗散系数意义的参数为负值时rabinovitch - fabrikant系统的动力学及其广义模型","authors":"L. Turukina","doi":"10.18500/0869-6632-003015","DOIUrl":null,"url":null,"abstract":"Purpose of this work is a numerical study of the Rabinovich–Fabrikant system and its generalized model, which describe the occurrence of chaos during the parametric interaction of three modes in a nonequilibrium medium with cubic nonlinearity, in the case when the parameters that have the meaning of dissipation coefficients take negative values. These models demonstrate a rich dynamics that differs in many respects from what was observed for them, but in the case of positive values of the parameters. Methods. The study is based on the numerical solution of the differential equations, and their numerical bifurcation analysis using the MаtCont program. Results. For investigated models we present a charts of dynamic regimes in the control parameters plane, Lyapunov exponents depending on the parameters, attractors and their basins. On the parameters plane, which have the meaning of dissipation coefficients, bifurcation lines and points are numerically found. They are plotted for equilibrium point and period one limit cycle. For both models we compared dynamics observed in the case when the parameters that have the meaning of dissipation coefficients take negative values, with the one observed in the case when these parameters take positive values. And it is shown that in the first case parameter space has a simpler structure. Conclusion. The Rabinovich– Fabrikant system and its generalized model were studied in detail in the case when the parameters which have the meaning of dissipation coefficients take negative values. It is shown that there are a number of differences in comparison with the case of positive values of these parameters. For example, a new type of chaotic attractor appears, multistability that is not related to the symmetry of the system disappears, etc. The obtained results are new, since the Rabinovich–Fabrikant system and its generalized model were studied in detail for the first time in the region of negative values of parameters which have the meaning of dissipation coefficients.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":"76 12 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of the Rabinovich–Fabrikant system and its generalized model in the case of negative values of parameters that have the meaning of dissipation coefficients\",\"authors\":\"L. Turukina\",\"doi\":\"10.18500/0869-6632-003015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose of this work is a numerical study of the Rabinovich–Fabrikant system and its generalized model, which describe the occurrence of chaos during the parametric interaction of three modes in a nonequilibrium medium with cubic nonlinearity, in the case when the parameters that have the meaning of dissipation coefficients take negative values. These models demonstrate a rich dynamics that differs in many respects from what was observed for them, but in the case of positive values of the parameters. Methods. The study is based on the numerical solution of the differential equations, and their numerical bifurcation analysis using the MаtCont program. Results. For investigated models we present a charts of dynamic regimes in the control parameters plane, Lyapunov exponents depending on the parameters, attractors and their basins. On the parameters plane, which have the meaning of dissipation coefficients, bifurcation lines and points are numerically found. They are plotted for equilibrium point and period one limit cycle. For both models we compared dynamics observed in the case when the parameters that have the meaning of dissipation coefficients take negative values, with the one observed in the case when these parameters take positive values. And it is shown that in the first case parameter space has a simpler structure. Conclusion. The Rabinovich– Fabrikant system and its generalized model were studied in detail in the case when the parameters which have the meaning of dissipation coefficients take negative values. It is shown that there are a number of differences in comparison with the case of positive values of these parameters. For example, a new type of chaotic attractor appears, multistability that is not related to the symmetry of the system disappears, etc. The obtained results are new, since the Rabinovich–Fabrikant system and its generalized model were studied in detail for the first time in the region of negative values of parameters which have the meaning of dissipation coefficients.\",\"PeriodicalId\":41611,\"journal\":{\"name\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"volume\":\"76 12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18500/0869-6632-003015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-003015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了三次非线性非平衡介质中具有耗散系数意义的参数为负值时,三模态参数相互作用过程中混沌现象的rabinovitch - fabrikant系统及其广义模型。这些模型展示了丰富的动态,在许多方面与观察到的不同,但在参数为正值的情况下。方法。本研究是基于微分方程的数值解,并利用mtcont程序对其进行数值分岔分析。结果。对于所研究的模型,我们给出了控制参数平面的动态状态图,Lyapunov指数依赖于参数,吸引子和它们的盆地。在具有耗散系数意义的参数平面上,用数值方法找到了分岔线和分岔点。它们被绘制为平衡点,周期为一个极限环。对于这两个模型,我们比较了具有耗散系数意义的参数取负值时观察到的动态,以及这些参数取正值时观察到的动态。结果表明,在第一种情况下,参数空间具有更简单的结构。结论。详细研究了具有耗散系数意义的参数取负值时Rabinovich - Fabrikant系统及其广义模型。结果表明,与这些参数为正值的情况相比,有许多不同之处。例如,出现了一种新的混沌吸引子,与系统对称性无关的多重稳定性消失等。本文首次在具有耗散系数意义的参数负值区域对rabinoich - fabrikant系统及其广义模型进行了详细的研究,得到了新的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of the Rabinovich–Fabrikant system and its generalized model in the case of negative values of parameters that have the meaning of dissipation coefficients
Purpose of this work is a numerical study of the Rabinovich–Fabrikant system and its generalized model, which describe the occurrence of chaos during the parametric interaction of three modes in a nonequilibrium medium with cubic nonlinearity, in the case when the parameters that have the meaning of dissipation coefficients take negative values. These models demonstrate a rich dynamics that differs in many respects from what was observed for them, but in the case of positive values of the parameters. Methods. The study is based on the numerical solution of the differential equations, and their numerical bifurcation analysis using the MаtCont program. Results. For investigated models we present a charts of dynamic regimes in the control parameters plane, Lyapunov exponents depending on the parameters, attractors and their basins. On the parameters plane, which have the meaning of dissipation coefficients, bifurcation lines and points are numerically found. They are plotted for equilibrium point and period one limit cycle. For both models we compared dynamics observed in the case when the parameters that have the meaning of dissipation coefficients take negative values, with the one observed in the case when these parameters take positive values. And it is shown that in the first case parameter space has a simpler structure. Conclusion. The Rabinovich– Fabrikant system and its generalized model were studied in detail in the case when the parameters which have the meaning of dissipation coefficients take negative values. It is shown that there are a number of differences in comparison with the case of positive values of these parameters. For example, a new type of chaotic attractor appears, multistability that is not related to the symmetry of the system disappears, etc. The obtained results are new, since the Rabinovich–Fabrikant system and its generalized model were studied in detail for the first time in the region of negative values of parameters which have the meaning of dissipation coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
25.00%
发文量
47
期刊介绍: Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信