双向方差分析模型的贝叶斯因子比较

IF 1 Q3 Mathematics
R. Vijayaragunathan, M. R. Srinivasan
{"title":"双向方差分析模型的贝叶斯因子比较","authors":"R. Vijayaragunathan, M. R. Srinivasan","doi":"10.2991/jsta.d.201230.001","DOIUrl":null,"url":null,"abstract":"Inthetraditionaltwo-wayanalysisofvariance(ANOVA)model,itispossibletoidentifythesignificanceofboththemaineffects andtheirinteractionbasedonthe P values. However, it is not possible to determine how much data supports the model when these effects are incorporated into the model. To overcome this practical difficulty, we applied Bayes factors for hierarchical models to check the intensity of the effects (both main and interaction). The objective is to identify the impact of the main and interaction effects based on a comparison of Bayes factors of the hierarchical ANOVA models. The application of Bayes factors enables to observe which model strengthens more while including or eliminating the effects in the model. Consequently, this paper proposes three priors such as Zellner’s g , Jefferys-Zellner-Siow, and Hyper-g priors, to compute the Bayes factor. Finally, we extended this procedure to the simulation data for the generalization of the Bayesian results.","PeriodicalId":45080,"journal":{"name":"Journal of Statistical Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Bayes Factors for Comparison of Two-Way ANOVA Models\",\"authors\":\"R. Vijayaragunathan, M. R. Srinivasan\",\"doi\":\"10.2991/jsta.d.201230.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inthetraditionaltwo-wayanalysisofvariance(ANOVA)model,itispossibletoidentifythesignificanceofboththemaineffects andtheirinteractionbasedonthe P values. However, it is not possible to determine how much data supports the model when these effects are incorporated into the model. To overcome this practical difficulty, we applied Bayes factors for hierarchical models to check the intensity of the effects (both main and interaction). The objective is to identify the impact of the main and interaction effects based on a comparison of Bayes factors of the hierarchical ANOVA models. The application of Bayes factors enables to observe which model strengthens more while including or eliminating the effects in the model. Consequently, this paper proposes three priors such as Zellner’s g , Jefferys-Zellner-Siow, and Hyper-g priors, to compute the Bayes factor. Finally, we extended this procedure to the simulation data for the generalization of the Bayesian results.\",\"PeriodicalId\":45080,\"journal\":{\"name\":\"Journal of Statistical Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/jsta.d.201230.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/jsta.d.201230.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8

摘要

在传统的双向方差分析(ANOVA)模型中,可以根据P值确定主效应及其相互作用的显著性。然而,当这些影响被纳入模型时,不可能确定有多少数据支持该模型。为了克服这一实际困难,我们将贝叶斯因子应用于分层模型,以检查影响的强度(主要和相互作用)。目的是根据层次方差分析模型的贝叶斯因素的比较,确定主效应和交互效应的影响。贝叶斯因子的应用可以观察到哪个模型在包括或消除模型中的影响的同时更强。因此,本文提出了Zellner’s g、Jefferys-Zellner-Siow和Hyper-g先验来计算贝叶斯因子。最后,我们将此过程推广到仿真数据中,以推广贝叶斯结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayes Factors for Comparison of Two-Way ANOVA Models
Inthetraditionaltwo-wayanalysisofvariance(ANOVA)model,itispossibletoidentifythesignificanceofboththemaineffects andtheirinteractionbasedonthe P values. However, it is not possible to determine how much data supports the model when these effects are incorporated into the model. To overcome this practical difficulty, we applied Bayes factors for hierarchical models to check the intensity of the effects (both main and interaction). The objective is to identify the impact of the main and interaction effects based on a comparison of Bayes factors of the hierarchical ANOVA models. The application of Bayes factors enables to observe which model strengthens more while including or eliminating the effects in the model. Consequently, this paper proposes three priors such as Zellner’s g , Jefferys-Zellner-Siow, and Hyper-g priors, to compute the Bayes factor. Finally, we extended this procedure to the simulation data for the generalization of the Bayesian results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
13
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信