{"title":"无线电力传输的谐振电感耦合","authors":"P. Athira, Tze-Zhang Ang, Mohamed Salem","doi":"10.54616/ijeps/20220301","DOIUrl":null,"url":null,"abstract":"Wireless power transmission (WPT) is the method that transferring electrical energy from power source to electrical without any physical contact and it can be used to transfer power to electricity dependent systems or devices. In WPT, electromagnetic energy is produced to transmit the energy from power source (transmitter) to the load (receiver) via resonant inductive coupling. This article focuses on the design of a resonant inductive coupling using parallel-T topology in coupling WTR and combined of single transmitter with multiple receivers. In addition, principle of magnetic wave between the transmitter and receiver with related parameters is utilized to develop in WPT. A parallel-T topology that consists of T-matching network for secondary side is proposed as it is more suitable for weak coupling wireless power transfer applications. Besides that, three circuits are designed to show the resonant inductive coupling for WTP which including the circuit with and without matching network and the circuit of single transmitter with multiple receivers. The simulation of output voltage and output current are observed to relate the effects of frequency on the circuit. The graph of output voltage and power are plotted to show the pattern on effect of the frequencies to the resonant inductive coupling circuit.","PeriodicalId":43153,"journal":{"name":"International Journal of Power and Energy Systems","volume":"38 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resonant Inductive Coupling for Wireless Power Transmission\",\"authors\":\"P. Athira, Tze-Zhang Ang, Mohamed Salem\",\"doi\":\"10.54616/ijeps/20220301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless power transmission (WPT) is the method that transferring electrical energy from power source to electrical without any physical contact and it can be used to transfer power to electricity dependent systems or devices. In WPT, electromagnetic energy is produced to transmit the energy from power source (transmitter) to the load (receiver) via resonant inductive coupling. This article focuses on the design of a resonant inductive coupling using parallel-T topology in coupling WTR and combined of single transmitter with multiple receivers. In addition, principle of magnetic wave between the transmitter and receiver with related parameters is utilized to develop in WPT. A parallel-T topology that consists of T-matching network for secondary side is proposed as it is more suitable for weak coupling wireless power transfer applications. Besides that, three circuits are designed to show the resonant inductive coupling for WTP which including the circuit with and without matching network and the circuit of single transmitter with multiple receivers. The simulation of output voltage and output current are observed to relate the effects of frequency on the circuit. The graph of output voltage and power are plotted to show the pattern on effect of the frequencies to the resonant inductive coupling circuit.\",\"PeriodicalId\":43153,\"journal\":{\"name\":\"International Journal of Power and Energy Systems\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Power and Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54616/ijeps/20220301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power and Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54616/ijeps/20220301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Resonant Inductive Coupling for Wireless Power Transmission
Wireless power transmission (WPT) is the method that transferring electrical energy from power source to electrical without any physical contact and it can be used to transfer power to electricity dependent systems or devices. In WPT, electromagnetic energy is produced to transmit the energy from power source (transmitter) to the load (receiver) via resonant inductive coupling. This article focuses on the design of a resonant inductive coupling using parallel-T topology in coupling WTR and combined of single transmitter with multiple receivers. In addition, principle of magnetic wave between the transmitter and receiver with related parameters is utilized to develop in WPT. A parallel-T topology that consists of T-matching network for secondary side is proposed as it is more suitable for weak coupling wireless power transfer applications. Besides that, three circuits are designed to show the resonant inductive coupling for WTP which including the circuit with and without matching network and the circuit of single transmitter with multiple receivers. The simulation of output voltage and output current are observed to relate the effects of frequency on the circuit. The graph of output voltage and power are plotted to show the pattern on effect of the frequencies to the resonant inductive coupling circuit.
期刊介绍:
First published in 1972, this journal serves a worldwide readership of power and energy professionals. As one of the premier referred publications in the field, this journal strives to be the first to explore emerging energy issues, featuring only papers of the highest scientific merit. The subject areas of this journal include power transmission, distribution and generation, electric power quality, education, energy development, competition and regulation, power electronics, communication, electric machinery, power engineering systems, protection, reliability and security, energy management systems and supervisory control, economics, dispatching and scheduling, energy systems modelling and simulation, alternative energy sources, policy and planning.