{"title":"一类分数阶$p$-拉普拉斯问题非平凡解的多重性","authors":"Ghanmi Abdeljabbar","doi":"10.4171/ZAA/1541","DOIUrl":null,"url":null,"abstract":". In this paper, we deal with existence of nontrivial solutions to the fractional p -Laplacian problem of the type where Ω is a bounded domain in R n with smooth boundary ∂ Ω, a ∈ C (Ω), p ≥ 2, α ∈ (0 , 1) such that pα < n , 1 < q < p < r < npn − αp , and F ∈ C 1 (Ω × R , R ). Using the decomposition of the Nehari manifold, we prove that the non-local elliptic problem has at least two nontrivial solutions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Multiplicity of Nontrivial Solutions of a Class of Fractional $p$-Laplacian Problem\",\"authors\":\"Ghanmi Abdeljabbar\",\"doi\":\"10.4171/ZAA/1541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we deal with existence of nontrivial solutions to the fractional p -Laplacian problem of the type where Ω is a bounded domain in R n with smooth boundary ∂ Ω, a ∈ C (Ω), p ≥ 2, α ∈ (0 , 1) such that pα < n , 1 < q < p < r < npn − αp , and F ∈ C 1 (Ω × R , R ). Using the decomposition of the Nehari manifold, we prove that the non-local elliptic problem has at least two nontrivial solutions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ZAA/1541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ZAA/1541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
摘要
. 本文讨论了分数阶p -拉普拉斯问题的非平凡解的存在性,该问题的类型为:Ω是rn中具有光滑边界∂Ω的有界域,a∈C (Ω), p≥2,α∈(0,1),使得pα < n, 1 < q < p < R < npn - αp, F∈c1 (Ω × R, R)。利用Nehari流形的分解,证明了非局部椭圆型问题至少有两个非平凡解。
Multiplicity of Nontrivial Solutions of a Class of Fractional $p$-Laplacian Problem
. In this paper, we deal with existence of nontrivial solutions to the fractional p -Laplacian problem of the type where Ω is a bounded domain in R n with smooth boundary ∂ Ω, a ∈ C (Ω), p ≥ 2, α ∈ (0 , 1) such that pα < n , 1 < q < p < r < npn − αp , and F ∈ C 1 (Ω × R , R ). Using the decomposition of the Nehari manifold, we prove that the non-local elliptic problem has at least two nontrivial solutions.