与Rd上指数权重相关的Weyl伪微分演算

Sean Harris
{"title":"与Rd上指数权重相关的Weyl伪微分演算","authors":"Sean Harris","doi":"10.1215/00192082-8886959","DOIUrl":null,"url":null,"abstract":"We construct a Weyl pseudodifferential calculus tailored to studying boundedness of operators on weighted $L^p$ spaces over $\\mathbb{R}^d$ with weights of the form $\\exp(-\\phi(x))$, for $\\phi$ a $C^2$ function, a setting in which the operator associated to the weighted Dirichlet form typically has only holomorphic functional calculus. A symbol class giving rise to bounded operators on $L^p$ is determined, and its properties analysed. This theory is used to calculate an upper bounded on the $H^\\infty$ angle of relevant operators, and deduces known optimal results in some cases. Finally, the symbol class is enriched and studied under an algebraic viewpoint.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Weyl pseudodifferential calculus associated with exponential weights on Rd\",\"authors\":\"Sean Harris\",\"doi\":\"10.1215/00192082-8886959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a Weyl pseudodifferential calculus tailored to studying boundedness of operators on weighted $L^p$ spaces over $\\\\mathbb{R}^d$ with weights of the form $\\\\exp(-\\\\phi(x))$, for $\\\\phi$ a $C^2$ function, a setting in which the operator associated to the weighted Dirichlet form typically has only holomorphic functional calculus. A symbol class giving rise to bounded operators on $L^p$ is determined, and its properties analysed. This theory is used to calculate an upper bounded on the $H^\\\\infty$ angle of relevant operators, and deduces known optimal results in some cases. Finally, the symbol class is enriched and studied under an algebraic viewpoint.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00192082-8886959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-8886959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们构造了一个Weyl伪微分演算,专门用于研究$\mathbb{R}^d$上权重为$\exp(-\phi(x))$的$L^p$空间上算子的有界性,对于$\phi$一个$C^2$函数,在该设置中,与加权狄利克雷形式相关的算子通常只有全纯泛函演算。确定了在$L^p$上产生有界算子的符号类,并分析了它的性质。该理论用于计算相关算子$H^\infty$角的上界,并在某些情况下推导出已知的最优结果。最后,从代数的角度对符号类进行了丰富和研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Weyl pseudodifferential calculus associated with exponential weights on Rd
We construct a Weyl pseudodifferential calculus tailored to studying boundedness of operators on weighted $L^p$ spaces over $\mathbb{R}^d$ with weights of the form $\exp(-\phi(x))$, for $\phi$ a $C^2$ function, a setting in which the operator associated to the weighted Dirichlet form typically has only holomorphic functional calculus. A symbol class giving rise to bounded operators on $L^p$ is determined, and its properties analysed. This theory is used to calculate an upper bounded on the $H^\infty$ angle of relevant operators, and deduces known optimal results in some cases. Finally, the symbol class is enriched and studied under an algebraic viewpoint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信