{"title":"与Rd上指数权重相关的Weyl伪微分演算","authors":"Sean Harris","doi":"10.1215/00192082-8886959","DOIUrl":null,"url":null,"abstract":"We construct a Weyl pseudodifferential calculus tailored to studying boundedness of operators on weighted $L^p$ spaces over $\\mathbb{R}^d$ with weights of the form $\\exp(-\\phi(x))$, for $\\phi$ a $C^2$ function, a setting in which the operator associated to the weighted Dirichlet form typically has only holomorphic functional calculus. A symbol class giving rise to bounded operators on $L^p$ is determined, and its properties analysed. This theory is used to calculate an upper bounded on the $H^\\infty$ angle of relevant operators, and deduces known optimal results in some cases. Finally, the symbol class is enriched and studied under an algebraic viewpoint.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Weyl pseudodifferential calculus associated with exponential weights on Rd\",\"authors\":\"Sean Harris\",\"doi\":\"10.1215/00192082-8886959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a Weyl pseudodifferential calculus tailored to studying boundedness of operators on weighted $L^p$ spaces over $\\\\mathbb{R}^d$ with weights of the form $\\\\exp(-\\\\phi(x))$, for $\\\\phi$ a $C^2$ function, a setting in which the operator associated to the weighted Dirichlet form typically has only holomorphic functional calculus. A symbol class giving rise to bounded operators on $L^p$ is determined, and its properties analysed. This theory is used to calculate an upper bounded on the $H^\\\\infty$ angle of relevant operators, and deduces known optimal results in some cases. Finally, the symbol class is enriched and studied under an algebraic viewpoint.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00192082-8886959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-8886959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Weyl pseudodifferential calculus associated with exponential weights on Rd
We construct a Weyl pseudodifferential calculus tailored to studying boundedness of operators on weighted $L^p$ spaces over $\mathbb{R}^d$ with weights of the form $\exp(-\phi(x))$, for $\phi$ a $C^2$ function, a setting in which the operator associated to the weighted Dirichlet form typically has only holomorphic functional calculus. A symbol class giving rise to bounded operators on $L^p$ is determined, and its properties analysed. This theory is used to calculate an upper bounded on the $H^\infty$ angle of relevant operators, and deduces known optimal results in some cases. Finally, the symbol class is enriched and studied under an algebraic viewpoint.