用拉普拉斯同伦分析法求解洛伦兹方程组

S. G, M. R, Saratha S R
{"title":"用拉普拉斯同伦分析法求解洛伦兹方程组","authors":"S. G, M. R, Saratha S R","doi":"10.4108/eai.7-12-2021.2314509","DOIUrl":null,"url":null,"abstract":". The Laplace Homotopy Analysis Method Via Modified Riemann-Liouville Integral has been explored from a new perspective. The important items are assimilated, and the result is proven using well-defined evidence. A combination of the homotopy analysis approach and the suggested integral transform is used to find fractional differential equations","PeriodicalId":20712,"journal":{"name":"Proceedings of the First International Conference on Combinatorial and Optimization, ICCAP 2021, December 7-8 2021, Chennai, India","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving lorenz system of equation by Laplace homotopy analysis method\",\"authors\":\"S. G, M. R, Saratha S R\",\"doi\":\"10.4108/eai.7-12-2021.2314509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The Laplace Homotopy Analysis Method Via Modified Riemann-Liouville Integral has been explored from a new perspective. The important items are assimilated, and the result is proven using well-defined evidence. A combination of the homotopy analysis approach and the suggested integral transform is used to find fractional differential equations\",\"PeriodicalId\":20712,\"journal\":{\"name\":\"Proceedings of the First International Conference on Combinatorial and Optimization, ICCAP 2021, December 7-8 2021, Chennai, India\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First International Conference on Combinatorial and Optimization, ICCAP 2021, December 7-8 2021, Chennai, India\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eai.7-12-2021.2314509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First International Conference on Combinatorial and Optimization, ICCAP 2021, December 7-8 2021, Chennai, India","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.7-12-2021.2314509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 从一个新的角度探讨了基于修正Riemann-Liouville积分的拉普拉斯同伦分析方法。重要的项目被吸收,结果被证明使用明确的证据。将同伦分析方法与建议的积分变换相结合,用于求分数阶微分方程
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving lorenz system of equation by Laplace homotopy analysis method
. The Laplace Homotopy Analysis Method Via Modified Riemann-Liouville Integral has been explored from a new perspective. The important items are assimilated, and the result is proven using well-defined evidence. A combination of the homotopy analysis approach and the suggested integral transform is used to find fractional differential equations
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信