子群族的群的有限性的一些结果

Timm von Puttkamer, Xiaolei Wu
{"title":"子群族的群的有限性的一些结果","authors":"Timm von Puttkamer, Xiaolei Wu","doi":"10.2140/agt.2020.20.2885","DOIUrl":null,"url":null,"abstract":"For a group $G$ we consider the classifying space $E_{\\mathcal{VC}yc}(G)$ for the family of virtually cyclic subgroups. We show that an Artin group admits a finite model for $E_{\\mathcal{VC}yc}(G)$ if and only if it is virtually cyclic. This solves a conjecture of Juan-Pineda and Leary and a question of L\\\"uck-Reich-Rognes-Varisco for Artin groups. We then study the conjugacy growth of CAT(0) groups and show that if a CAT(0) group contains a free abelian group of rank two, its conjugacy growth is strictly faster than linear. This also yields an alternative proof for the fact that a CAT(0) cube group admits a finite model for $E_{\\mathcal{VC}yc}(G)$ if and only if it is virtually cyclic. Our last result deals with the homotopy type of the quotient space $B_{\\mathcal{VC}yc}(G) = E_{\\mathcal{VC}yc}(G)/G$. We show for a poly-$\\mathbb Z$-group $G$, that $B_{\\mathcal{VC}yc}(G)$ is homotopy equivalent to a finite CW-complex if and only if $G$ is cyclic.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some results related to finiteness properties of groups for families of subgroups\",\"authors\":\"Timm von Puttkamer, Xiaolei Wu\",\"doi\":\"10.2140/agt.2020.20.2885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a group $G$ we consider the classifying space $E_{\\\\mathcal{VC}yc}(G)$ for the family of virtually cyclic subgroups. We show that an Artin group admits a finite model for $E_{\\\\mathcal{VC}yc}(G)$ if and only if it is virtually cyclic. This solves a conjecture of Juan-Pineda and Leary and a question of L\\\\\\\"uck-Reich-Rognes-Varisco for Artin groups. We then study the conjugacy growth of CAT(0) groups and show that if a CAT(0) group contains a free abelian group of rank two, its conjugacy growth is strictly faster than linear. This also yields an alternative proof for the fact that a CAT(0) cube group admits a finite model for $E_{\\\\mathcal{VC}yc}(G)$ if and only if it is virtually cyclic. Our last result deals with the homotopy type of the quotient space $B_{\\\\mathcal{VC}yc}(G) = E_{\\\\mathcal{VC}yc}(G)/G$. We show for a poly-$\\\\mathbb Z$-group $G$, that $B_{\\\\mathcal{VC}yc}(G)$ is homotopy equivalent to a finite CW-complex if and only if $G$ is cyclic.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2020.20.2885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2020.20.2885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于群$G$,我们考虑了虚循环子群族的分类空间$E_{\mathcal{VC}yc}(G)$。我们证明了Artin群承认$E_{\mathcal{VC}yc}(G)$的有限模型当且仅当它是虚循环的。这解决了Juan-Pineda和Leary的一个猜想和L\"uck-Reich-Rognes-Varisco关于Artin群的一个问题。然后我们研究了CAT(0)群的共轭增长,并证明了如果一个CAT(0)群包含一个2秩的自由阿贝尔群,它的共轭增长是严格快于线性的。这也为CAT(0)立方体群承认$E_{\mathcal{VC}yc}(G)$的有限模型当且仅当它是虚循环的这一事实提供了另一种证明。最后一个结果讨论了商空间$B_{\mathcal{VC}yc}(G) = E_{\mathcal{VC}yc}(G)/G$的同伦类型。我们证明了对于聚$\mathbb Z$-群$G$, $B_{\mathcal{VC}yc}(G)$是同伦等价于有限cw -复当且仅当$G$是循环的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some results related to finiteness properties of groups for families of subgroups
For a group $G$ we consider the classifying space $E_{\mathcal{VC}yc}(G)$ for the family of virtually cyclic subgroups. We show that an Artin group admits a finite model for $E_{\mathcal{VC}yc}(G)$ if and only if it is virtually cyclic. This solves a conjecture of Juan-Pineda and Leary and a question of L\"uck-Reich-Rognes-Varisco for Artin groups. We then study the conjugacy growth of CAT(0) groups and show that if a CAT(0) group contains a free abelian group of rank two, its conjugacy growth is strictly faster than linear. This also yields an alternative proof for the fact that a CAT(0) cube group admits a finite model for $E_{\mathcal{VC}yc}(G)$ if and only if it is virtually cyclic. Our last result deals with the homotopy type of the quotient space $B_{\mathcal{VC}yc}(G) = E_{\mathcal{VC}yc}(G)/G$. We show for a poly-$\mathbb Z$-group $G$, that $B_{\mathcal{VC}yc}(G)$ is homotopy equivalent to a finite CW-complex if and only if $G$ is cyclic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信