Mohammad-Mehdi Mehrabi Nejad, Aminreza Abkhoo, F. Salahshour, M. Salehi, M. Gity, Hamidreza Komaki, S. Kolahi
{"title":"胸部CT扫描特征预测COVID-19患者的预后和生存","authors":"Mohammad-Mehdi Mehrabi Nejad, Aminreza Abkhoo, F. Salahshour, M. Salehi, M. Gity, Hamidreza Komaki, S. Kolahi","doi":"10.1155/2022/4732988","DOIUrl":null,"url":null,"abstract":"Background Providing efficient care for infectious coronavirus disease 2019 (COVID-19) patients requires an accurate and accessible tool to medically optimize medical resource allocation to high-risk patients. Purpose To assess the predictive value of on-admission chest CT characteristics to estimate COVID-19 patients' outcome and survival time. Materials and Methods Using a case-control design, we included all laboratory-confirmed COVID-19 patients who were deceased, from June to September 2020, in a tertiary-referral-collegiate hospital and had on-admission chest CT as the case group. The patients who did not die and were equivalent in terms of demographics and other clinical features to cases were considered as the control (survivors) group. The equivalency evaluation was performed by a fellowship-trained radiologist and an expert radiologist. Pulmonary involvement (PI) was scored (0–25) using a semiquantitative scoring tool. The PI density index was calculated by dividing the total PI score by the number of involved lung lobes. All imaging parameters were compared between case and control group members. Survival time was recorded for the case group. All demographic, clinical, and imaging variables were included in the survival analyses. Results After evaluating 384 cases, a total of 186 patients (93 in each group) were admitted to the studied setting, consisting of 126 (67.7%) male patients with a mean age of 60.4 ± 13.6 years. The PI score and PI density index in the case vs. the control group were on average 8.9 ± 4.5 vs. 10.7 ± 4.4 (p value: 0.001) and 2.0 ± 0.7 vs. 2.6 ± 0.8 (p value: 0.01), respectively. Axial distribution (p value: 0.01), cardiomegaly (p value: 0.005), pleural effusion (p value: 0.001), and pericardial effusion (p value: 0.04) were mostly observed in deceased patients. Our survival analyses demonstrated that PI score ≥ 10 (p value: 0.02) and PI density index ≥ 2.2 (p value: 0.03) were significantly associated with a lower survival rate. Conclusion On-admission chest CT features, particularly PI score and PI density index, are potential great tools to predict the patient's clinical outcome.","PeriodicalId":51864,"journal":{"name":"Radiology Research and Practice","volume":"9 2 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Chest CT Scan Features to Predict COVID-19 Patients' Outcome and Survival\",\"authors\":\"Mohammad-Mehdi Mehrabi Nejad, Aminreza Abkhoo, F. Salahshour, M. Salehi, M. Gity, Hamidreza Komaki, S. Kolahi\",\"doi\":\"10.1155/2022/4732988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background Providing efficient care for infectious coronavirus disease 2019 (COVID-19) patients requires an accurate and accessible tool to medically optimize medical resource allocation to high-risk patients. Purpose To assess the predictive value of on-admission chest CT characteristics to estimate COVID-19 patients' outcome and survival time. Materials and Methods Using a case-control design, we included all laboratory-confirmed COVID-19 patients who were deceased, from June to September 2020, in a tertiary-referral-collegiate hospital and had on-admission chest CT as the case group. The patients who did not die and were equivalent in terms of demographics and other clinical features to cases were considered as the control (survivors) group. The equivalency evaluation was performed by a fellowship-trained radiologist and an expert radiologist. Pulmonary involvement (PI) was scored (0–25) using a semiquantitative scoring tool. The PI density index was calculated by dividing the total PI score by the number of involved lung lobes. All imaging parameters were compared between case and control group members. Survival time was recorded for the case group. All demographic, clinical, and imaging variables were included in the survival analyses. Results After evaluating 384 cases, a total of 186 patients (93 in each group) were admitted to the studied setting, consisting of 126 (67.7%) male patients with a mean age of 60.4 ± 13.6 years. The PI score and PI density index in the case vs. the control group were on average 8.9 ± 4.5 vs. 10.7 ± 4.4 (p value: 0.001) and 2.0 ± 0.7 vs. 2.6 ± 0.8 (p value: 0.01), respectively. Axial distribution (p value: 0.01), cardiomegaly (p value: 0.005), pleural effusion (p value: 0.001), and pericardial effusion (p value: 0.04) were mostly observed in deceased patients. Our survival analyses demonstrated that PI score ≥ 10 (p value: 0.02) and PI density index ≥ 2.2 (p value: 0.03) were significantly associated with a lower survival rate. Conclusion On-admission chest CT features, particularly PI score and PI density index, are potential great tools to predict the patient's clinical outcome.\",\"PeriodicalId\":51864,\"journal\":{\"name\":\"Radiology Research and Practice\",\"volume\":\"9 2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology Research and Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/4732988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology Research and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/4732988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Chest CT Scan Features to Predict COVID-19 Patients' Outcome and Survival
Background Providing efficient care for infectious coronavirus disease 2019 (COVID-19) patients requires an accurate and accessible tool to medically optimize medical resource allocation to high-risk patients. Purpose To assess the predictive value of on-admission chest CT characteristics to estimate COVID-19 patients' outcome and survival time. Materials and Methods Using a case-control design, we included all laboratory-confirmed COVID-19 patients who were deceased, from June to September 2020, in a tertiary-referral-collegiate hospital and had on-admission chest CT as the case group. The patients who did not die and were equivalent in terms of demographics and other clinical features to cases were considered as the control (survivors) group. The equivalency evaluation was performed by a fellowship-trained radiologist and an expert radiologist. Pulmonary involvement (PI) was scored (0–25) using a semiquantitative scoring tool. The PI density index was calculated by dividing the total PI score by the number of involved lung lobes. All imaging parameters were compared between case and control group members. Survival time was recorded for the case group. All demographic, clinical, and imaging variables were included in the survival analyses. Results After evaluating 384 cases, a total of 186 patients (93 in each group) were admitted to the studied setting, consisting of 126 (67.7%) male patients with a mean age of 60.4 ± 13.6 years. The PI score and PI density index in the case vs. the control group were on average 8.9 ± 4.5 vs. 10.7 ± 4.4 (p value: 0.001) and 2.0 ± 0.7 vs. 2.6 ± 0.8 (p value: 0.01), respectively. Axial distribution (p value: 0.01), cardiomegaly (p value: 0.005), pleural effusion (p value: 0.001), and pericardial effusion (p value: 0.04) were mostly observed in deceased patients. Our survival analyses demonstrated that PI score ≥ 10 (p value: 0.02) and PI density index ≥ 2.2 (p value: 0.03) were significantly associated with a lower survival rate. Conclusion On-admission chest CT features, particularly PI score and PI density index, are potential great tools to predict the patient's clinical outcome.
期刊介绍:
Radiology Research and Practice is a peer-reviewed, Open Access journal that publishes articles on all areas of medical imaging. The journal promotes evidence-based radiology practice though the publication of original research, reviews, and clinical studies for a multidisciplinary audience. Radiology Research and Practice is archived in Portico, which provides permanent archiving for electronic scholarly journals, as well as via the LOCKSS initiative. It operates a fully open access publishing model which allows open global access to its published content. This model is supported through Article Processing Charges. For more information on Article Processing charges in gen