S. Dupont, Maryna Sanalatii, M. Melon, O. Robin, A. Berry, J. Le Roux
{"title":"用声场合成技术表征任意入射角下的声学材料","authors":"S. Dupont, Maryna Sanalatii, M. Melon, O. Robin, A. Berry, J. Le Roux","doi":"10.1051/aacus/2022054","DOIUrl":null,"url":null,"abstract":"Standardized methods for measuring sound absorption such as the impedance tube and reverberation chamber methods are limited to normal or diffuse incidence, respectively. Two research axes have been generally followed in the literature to develop alternative techniques, the first one focusing on the measurement part, that is from the two-microphone technique to the use of microphone arrays or pressure-velocity sensors. The second axis focuses on the excitation part with for instance the use of sound field synthesis techniques. Since acoustic impedance and sound absorption coefficient of materials are classically defined under normal and oblique plane wave excitation, synthesizing an “ideal” plane wave using a loudspeaker array would allow measuring these acoustics quantities using a simple microphone pair. In this article, the effect of the different parameters of a loudspeaker array on acoustic plane waves reproduction on a material’s surface is first numerically studied. Then, numerical and experimental results for the estimation of both impedance and absorption coefficients are reported. These results show that sound field synthesis allows to characterize a material for arbitrary incidence angles over a wide frequency range, thus offering an alternative method to standard techniques and an improvement over existing works.","PeriodicalId":48486,"journal":{"name":"Acta Acustica","volume":"27 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Characterization of acoustic materials at arbitrary incidence angle using sound field synthesis\",\"authors\":\"S. Dupont, Maryna Sanalatii, M. Melon, O. Robin, A. Berry, J. Le Roux\",\"doi\":\"10.1051/aacus/2022054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Standardized methods for measuring sound absorption such as the impedance tube and reverberation chamber methods are limited to normal or diffuse incidence, respectively. Two research axes have been generally followed in the literature to develop alternative techniques, the first one focusing on the measurement part, that is from the two-microphone technique to the use of microphone arrays or pressure-velocity sensors. The second axis focuses on the excitation part with for instance the use of sound field synthesis techniques. Since acoustic impedance and sound absorption coefficient of materials are classically defined under normal and oblique plane wave excitation, synthesizing an “ideal” plane wave using a loudspeaker array would allow measuring these acoustics quantities using a simple microphone pair. In this article, the effect of the different parameters of a loudspeaker array on acoustic plane waves reproduction on a material’s surface is first numerically studied. Then, numerical and experimental results for the estimation of both impedance and absorption coefficients are reported. These results show that sound field synthesis allows to characterize a material for arbitrary incidence angles over a wide frequency range, thus offering an alternative method to standard techniques and an improvement over existing works.\",\"PeriodicalId\":48486,\"journal\":{\"name\":\"Acta Acustica\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Acustica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/aacus/2022054\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Acustica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/aacus/2022054","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Characterization of acoustic materials at arbitrary incidence angle using sound field synthesis
Standardized methods for measuring sound absorption such as the impedance tube and reverberation chamber methods are limited to normal or diffuse incidence, respectively. Two research axes have been generally followed in the literature to develop alternative techniques, the first one focusing on the measurement part, that is from the two-microphone technique to the use of microphone arrays or pressure-velocity sensors. The second axis focuses on the excitation part with for instance the use of sound field synthesis techniques. Since acoustic impedance and sound absorption coefficient of materials are classically defined under normal and oblique plane wave excitation, synthesizing an “ideal” plane wave using a loudspeaker array would allow measuring these acoustics quantities using a simple microphone pair. In this article, the effect of the different parameters of a loudspeaker array on acoustic plane waves reproduction on a material’s surface is first numerically studied. Then, numerical and experimental results for the estimation of both impedance and absorption coefficients are reported. These results show that sound field synthesis allows to characterize a material for arbitrary incidence angles over a wide frequency range, thus offering an alternative method to standard techniques and an improvement over existing works.
期刊介绍:
Acta Acustica, the Journal of the European Acoustics Association (EAA).
After the publication of its Journal Acta Acustica from 1993 to 1995, the EAA published Acta Acustica united with Acustica from 1996 to 2019. From 2020, the EAA decided to publish a journal in full Open Access. See Article Processing charges.
Acta Acustica reports on original scientific research in acoustics and on engineering applications. The journal considers review papers, scientific papers, technical and applied papers, short communications, letters to the editor. From time to time, special issues and review articles are also published. For book reviews or doctoral thesis abstracts, please contact the Editor in Chief.