用声场合成技术表征任意入射角下的声学材料

IF 1 3区 物理与天体物理 Q4 ACOUSTICS
S. Dupont, Maryna Sanalatii, M. Melon, O. Robin, A. Berry, J. Le Roux
{"title":"用声场合成技术表征任意入射角下的声学材料","authors":"S. Dupont, Maryna Sanalatii, M. Melon, O. Robin, A. Berry, J. Le Roux","doi":"10.1051/aacus/2022054","DOIUrl":null,"url":null,"abstract":"Standardized methods for measuring sound absorption such as the impedance tube and reverberation chamber methods are limited to normal or diffuse incidence, respectively. Two research axes have been generally followed in the literature to develop alternative techniques, the first one focusing on the measurement part, that is from the two-microphone technique to the use of microphone arrays or pressure-velocity sensors. The second axis focuses on the excitation part with for instance the use of sound field synthesis techniques. Since acoustic impedance and sound absorption coefficient of materials are classically defined under normal and oblique plane wave excitation, synthesizing an “ideal” plane wave using a loudspeaker array would allow measuring these acoustics quantities using a simple microphone pair. In this article, the effect of the different parameters of a loudspeaker array on acoustic plane waves reproduction on a material’s surface is first numerically studied. Then, numerical and experimental results for the estimation of both impedance and absorption coefficients are reported. These results show that sound field synthesis allows to characterize a material for arbitrary incidence angles over a wide frequency range, thus offering an alternative method to standard techniques and an improvement over existing works.","PeriodicalId":48486,"journal":{"name":"Acta Acustica","volume":"27 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Characterization of acoustic materials at arbitrary incidence angle using sound field synthesis\",\"authors\":\"S. Dupont, Maryna Sanalatii, M. Melon, O. Robin, A. Berry, J. Le Roux\",\"doi\":\"10.1051/aacus/2022054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Standardized methods for measuring sound absorption such as the impedance tube and reverberation chamber methods are limited to normal or diffuse incidence, respectively. Two research axes have been generally followed in the literature to develop alternative techniques, the first one focusing on the measurement part, that is from the two-microphone technique to the use of microphone arrays or pressure-velocity sensors. The second axis focuses on the excitation part with for instance the use of sound field synthesis techniques. Since acoustic impedance and sound absorption coefficient of materials are classically defined under normal and oblique plane wave excitation, synthesizing an “ideal” plane wave using a loudspeaker array would allow measuring these acoustics quantities using a simple microphone pair. In this article, the effect of the different parameters of a loudspeaker array on acoustic plane waves reproduction on a material’s surface is first numerically studied. Then, numerical and experimental results for the estimation of both impedance and absorption coefficients are reported. These results show that sound field synthesis allows to characterize a material for arbitrary incidence angles over a wide frequency range, thus offering an alternative method to standard techniques and an improvement over existing works.\",\"PeriodicalId\":48486,\"journal\":{\"name\":\"Acta Acustica\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Acustica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/aacus/2022054\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Acustica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/aacus/2022054","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 2

摘要

测量吸声的标准化方法,如阻抗管法和混响室法,分别局限于正常入射或漫射入射。在文献中,一般遵循两个研究轴来开发替代技术,第一个研究轴侧重于测量部分,即从双传声器技术到使用传声器阵列或压力-速度传感器。第二个轴侧重于激励部分,例如使用声场合成技术。由于材料的声阻抗和吸声系数通常是在正面波和斜面波激励下定义的,因此使用扬声器阵列合成“理想”平面波将允许使用简单的麦克风对测量这些声学量。本文首先用数值方法研究了扬声器阵列不同参数对声平面波在材料表面再现的影响。然后,给出了阻抗系数和吸收系数估计的数值和实验结果。这些结果表明,声场合成允许在宽频率范围内表征任意入射角的材料,从而提供了标准技术的替代方法和对现有工作的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of acoustic materials at arbitrary incidence angle using sound field synthesis
Standardized methods for measuring sound absorption such as the impedance tube and reverberation chamber methods are limited to normal or diffuse incidence, respectively. Two research axes have been generally followed in the literature to develop alternative techniques, the first one focusing on the measurement part, that is from the two-microphone technique to the use of microphone arrays or pressure-velocity sensors. The second axis focuses on the excitation part with for instance the use of sound field synthesis techniques. Since acoustic impedance and sound absorption coefficient of materials are classically defined under normal and oblique plane wave excitation, synthesizing an “ideal” plane wave using a loudspeaker array would allow measuring these acoustics quantities using a simple microphone pair. In this article, the effect of the different parameters of a loudspeaker array on acoustic plane waves reproduction on a material’s surface is first numerically studied. Then, numerical and experimental results for the estimation of both impedance and absorption coefficients are reported. These results show that sound field synthesis allows to characterize a material for arbitrary incidence angles over a wide frequency range, thus offering an alternative method to standard techniques and an improvement over existing works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Acustica
Acta Acustica ACOUSTICS-
CiteScore
2.80
自引率
21.40%
发文量
0
审稿时长
12 weeks
期刊介绍: Acta Acustica, the Journal of the European Acoustics Association (EAA). After the publication of its Journal Acta Acustica from 1993 to 1995, the EAA published Acta Acustica united with Acustica from 1996 to 2019. From 2020, the EAA decided to publish a journal in full Open Access. See Article Processing charges. Acta Acustica reports on original scientific research in acoustics and on engineering applications. The journal considers review papers, scientific papers, technical and applied papers, short communications, letters to the editor. From time to time, special issues and review articles are also published. For book reviews or doctoral thesis abstracts, please contact the Editor in Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信