非光滑不可微分式规划中的Mond—Weir型对偶性

Yang Yong, Zaien Hou
{"title":"非光滑不可微分式规划中的Mond—Weir型对偶性","authors":"Yang Yong, Zaien Hou","doi":"10.1109/ICIC.2011.10","DOIUrl":null,"url":null,"abstract":"We have defined some kinds of generalized convex function in paper [1]. which generalize some of the present convex functions. In the framework of these new concepts, a Mond-Weir type dual for a class of fractional programming problem is considered. Appropriate duality results are formulated. The results obtained not only provide a measurement of sensitivity for given problems to perturbations, but also can be apply to the questions occur in resource allocation, stock cutting problem in paper industry, agricultural planning and portfolio selection etc.","PeriodicalId":6397,"journal":{"name":"2011 Fourth International Conference on Information and Computing","volume":"103 1","pages":"464-466"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mond -- Weir Type Duality in Nonsmooth Nondifferentiable Fractional Programming\",\"authors\":\"Yang Yong, Zaien Hou\",\"doi\":\"10.1109/ICIC.2011.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have defined some kinds of generalized convex function in paper [1]. which generalize some of the present convex functions. In the framework of these new concepts, a Mond-Weir type dual for a class of fractional programming problem is considered. Appropriate duality results are formulated. The results obtained not only provide a measurement of sensitivity for given problems to perturbations, but also can be apply to the questions occur in resource allocation, stock cutting problem in paper industry, agricultural planning and portfolio selection etc.\",\"PeriodicalId\":6397,\"journal\":{\"name\":\"2011 Fourth International Conference on Information and Computing\",\"volume\":\"103 1\",\"pages\":\"464-466\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Conference on Information and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIC.2011.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Information and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIC.2011.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在文献[1]中定义了几种广义凸函数。它推广了一些现有的凸函数。在这些新概念的框架下,考虑了一类分式规划问题的Mond-Weir对偶。给出了适当的对偶结果。所得结果不仅可以衡量给定问题对扰动的敏感性,而且可以应用于资源配置、造纸行业的库存削减问题、农业规划和投资组合选择等问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mond -- Weir Type Duality in Nonsmooth Nondifferentiable Fractional Programming
We have defined some kinds of generalized convex function in paper [1]. which generalize some of the present convex functions. In the framework of these new concepts, a Mond-Weir type dual for a class of fractional programming problem is considered. Appropriate duality results are formulated. The results obtained not only provide a measurement of sensitivity for given problems to perturbations, but also can be apply to the questions occur in resource allocation, stock cutting problem in paper industry, agricultural planning and portfolio selection etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信