视频中头部运动脉冲检测

Guha Balakrishnan, F. Durand, J. Guttag
{"title":"视频中头部运动脉冲检测","authors":"Guha Balakrishnan, F. Durand, J. Guttag","doi":"10.1109/CVPR.2013.440","DOIUrl":null,"url":null,"abstract":"We extract heart rate and beat lengths from videos by measuring subtle head motion caused by the Newtonian reaction to the influx of blood at each beat. Our method tracks features on the head and performs principal component analysis (PCA) to decompose their trajectories into a set of component motions. It then chooses the component that best corresponds to heartbeats based on its temporal frequency spectrum. Finally, we analyze the motion projected to this component and identify peaks of the trajectories, which correspond to heartbeats. When evaluated on 18 subjects, our approach reported heart rates nearly identical to an electrocardiogram device. Additionally we were able to capture clinically relevant information about heart rate variability.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"81 1","pages":"3430-3437"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"508","resultStr":"{\"title\":\"Detecting Pulse from Head Motions in Video\",\"authors\":\"Guha Balakrishnan, F. Durand, J. Guttag\",\"doi\":\"10.1109/CVPR.2013.440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extract heart rate and beat lengths from videos by measuring subtle head motion caused by the Newtonian reaction to the influx of blood at each beat. Our method tracks features on the head and performs principal component analysis (PCA) to decompose their trajectories into a set of component motions. It then chooses the component that best corresponds to heartbeats based on its temporal frequency spectrum. Finally, we analyze the motion projected to this component and identify peaks of the trajectories, which correspond to heartbeats. When evaluated on 18 subjects, our approach reported heart rates nearly identical to an electrocardiogram device. Additionally we were able to capture clinically relevant information about heart rate variability.\",\"PeriodicalId\":6343,\"journal\":{\"name\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"81 1\",\"pages\":\"3430-3437\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"508\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2013.440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 508

摘要

我们从视频中提取心率和心跳长度,方法是测量每次心跳时血液流入时的牛顿反应引起的细微头部运动。我们的方法跟踪头部特征,并执行主成分分析(PCA)将其轨迹分解为一组分量运动。然后,它根据时间频谱选择最符合心跳的分量。最后,我们分析了投射到该分量的运动,并识别了与心跳对应的轨迹峰值。当对18名受试者进行评估时,我们的方法报告的心率几乎与心电图设备相同。此外,我们还能够获得有关心率变异性的临床相关信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Pulse from Head Motions in Video
We extract heart rate and beat lengths from videos by measuring subtle head motion caused by the Newtonian reaction to the influx of blood at each beat. Our method tracks features on the head and performs principal component analysis (PCA) to decompose their trajectories into a set of component motions. It then chooses the component that best corresponds to heartbeats based on its temporal frequency spectrum. Finally, we analyze the motion projected to this component and identify peaks of the trajectories, which correspond to heartbeats. When evaluated on 18 subjects, our approach reported heart rates nearly identical to an electrocardiogram device. Additionally we were able to capture clinically relevant information about heart rate variability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信