{"title":"基于子空间局部密度估计的异常检测算法","authors":"Chunkai Zhang, Ao Yin","doi":"10.4018/IJWSR.2019070103","DOIUrl":null,"url":null,"abstract":"In this article, the authors propose a novel anomaly detection algorithm based on subspace local density estimation. The key insight of the proposed algorithm is to build multiple trident trees, which can implement the process of building subspace and local density estimation. Each trident tree (T-tree) is constructed recursively by splitting the data outside of 3 sigma into the left or right subtree and splitting the remaining data into the middle subtree. Each node in trident tree records the number of instances that falls on this node, so each trident tree can be used as a local density estimator. The density of each instance is the average of all trident tree evaluation instance densities, and it can be used as the anomaly score of instances. Since each trident tree is constructed according to 3 sigma principle, it can obtain good anomaly detection results without a large tree height. Theoretical analysis and experimental results show that the proposed algorithm is effective and efficient.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"2 1","pages":"44-58"},"PeriodicalIF":0.8000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Anomaly Detection Algorithm Based on Subspace Local Density Estimation\",\"authors\":\"Chunkai Zhang, Ao Yin\",\"doi\":\"10.4018/IJWSR.2019070103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the authors propose a novel anomaly detection algorithm based on subspace local density estimation. The key insight of the proposed algorithm is to build multiple trident trees, which can implement the process of building subspace and local density estimation. Each trident tree (T-tree) is constructed recursively by splitting the data outside of 3 sigma into the left or right subtree and splitting the remaining data into the middle subtree. Each node in trident tree records the number of instances that falls on this node, so each trident tree can be used as a local density estimator. The density of each instance is the average of all trident tree evaluation instance densities, and it can be used as the anomaly score of instances. Since each trident tree is constructed according to 3 sigma principle, it can obtain good anomaly detection results without a large tree height. Theoretical analysis and experimental results show that the proposed algorithm is effective and efficient.\",\"PeriodicalId\":54936,\"journal\":{\"name\":\"International Journal of Web Services Research\",\"volume\":\"2 1\",\"pages\":\"44-58\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Web Services Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/IJWSR.2019070103\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/IJWSR.2019070103","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Anomaly Detection Algorithm Based on Subspace Local Density Estimation
In this article, the authors propose a novel anomaly detection algorithm based on subspace local density estimation. The key insight of the proposed algorithm is to build multiple trident trees, which can implement the process of building subspace and local density estimation. Each trident tree (T-tree) is constructed recursively by splitting the data outside of 3 sigma into the left or right subtree and splitting the remaining data into the middle subtree. Each node in trident tree records the number of instances that falls on this node, so each trident tree can be used as a local density estimator. The density of each instance is the average of all trident tree evaluation instance densities, and it can be used as the anomaly score of instances. Since each trident tree is constructed according to 3 sigma principle, it can obtain good anomaly detection results without a large tree height. Theoretical analysis and experimental results show that the proposed algorithm is effective and efficient.
期刊介绍:
The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.