在lsamvy游动中超扩散开始时的普遍性起源

Asaf Miron
{"title":"在lsamvy游动中超扩散开始时的普遍性起源","authors":"Asaf Miron","doi":"10.1103/physrevresearch.2.032042","DOIUrl":null,"url":null,"abstract":"Superdiffusion arises when complicated, correlated and noisy motion at the microscopic scale conspires to yield peculiar dynamics at the macroscopic scale. It ubiquitously appears in a variety of scenarios, spanning a broad range of scientific disciplines. The approach of superdiffusive systems towards their long-time, asymptotic behavior was recently studied using the Levy walk of order $1<\\beta<2$, revealing a universal transition at the critical $\\beta_{c}=3/2$. Here, we investigate the origin of this transition and identify two crucial ingredients: a finite velocity which couples the walker's position to time and a corresponding transition in the fluctuations of the number of walks $n$ completed by the walker at time $t$.","PeriodicalId":8473,"journal":{"name":"arXiv: Statistical Mechanics","volume":"179 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Origin of universality in the onset of superdiffusion in Lévy walks\",\"authors\":\"Asaf Miron\",\"doi\":\"10.1103/physrevresearch.2.032042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Superdiffusion arises when complicated, correlated and noisy motion at the microscopic scale conspires to yield peculiar dynamics at the macroscopic scale. It ubiquitously appears in a variety of scenarios, spanning a broad range of scientific disciplines. The approach of superdiffusive systems towards their long-time, asymptotic behavior was recently studied using the Levy walk of order $1<\\\\beta<2$, revealing a universal transition at the critical $\\\\beta_{c}=3/2$. Here, we investigate the origin of this transition and identify two crucial ingredients: a finite velocity which couples the walker's position to time and a corresponding transition in the fluctuations of the number of walks $n$ completed by the walker at time $t$.\",\"PeriodicalId\":8473,\"journal\":{\"name\":\"arXiv: Statistical Mechanics\",\"volume\":\"179 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevresearch.2.032042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.2.032042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当微观尺度上复杂的、相关的和有噪声的运动在宏观尺度上产生特殊的动力学时,超扩散就产生了。它无处不在地出现在各种各样的场景中,跨越了广泛的科学学科。最近利用阶$1<\beta<2$的Levy游走研究了超扩散系统的长时间渐近行为,揭示了临界$\beta_{c}=3/2$处的普遍跃迁。在这里,我们研究了这种转变的起源,并确定了两个关键因素:将步行者的位置与时间耦合在一起的有限速度,以及步行者在时间$t$完成的行走次数$n$波动中的相应转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Origin of universality in the onset of superdiffusion in Lévy walks
Superdiffusion arises when complicated, correlated and noisy motion at the microscopic scale conspires to yield peculiar dynamics at the macroscopic scale. It ubiquitously appears in a variety of scenarios, spanning a broad range of scientific disciplines. The approach of superdiffusive systems towards their long-time, asymptotic behavior was recently studied using the Levy walk of order $1<\beta<2$, revealing a universal transition at the critical $\beta_{c}=3/2$. Here, we investigate the origin of this transition and identify two crucial ingredients: a finite velocity which couples the walker's position to time and a corresponding transition in the fluctuations of the number of walks $n$ completed by the walker at time $t$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信