{"title":"伪黎曼结构与泊松结构的相容性","authors":"Mohamed Boucetta","doi":"10.1016/S0764-4442(01)02132-2","DOIUrl":null,"url":null,"abstract":"<div><p>We will introduce two notions of compatibility between pseudo-Riemannian metric and Poisson structure using the notion of contravariant connection introduced in [1], we will study some properties of manifold endowed with such compatible structures and we will give some examples.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 8","pages":"Pages 763-768"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02132-2","citationCount":"49","resultStr":"{\"title\":\"Compatibilité des structures pseudo-riemanniennes et des structures de Poisson\",\"authors\":\"Mohamed Boucetta\",\"doi\":\"10.1016/S0764-4442(01)02132-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We will introduce two notions of compatibility between pseudo-Riemannian metric and Poisson structure using the notion of contravariant connection introduced in [1], we will study some properties of manifold endowed with such compatible structures and we will give some examples.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 8\",\"pages\":\"Pages 763-768\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02132-2\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201021322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compatibilité des structures pseudo-riemanniennes et des structures de Poisson
We will introduce two notions of compatibility between pseudo-Riemannian metric and Poisson structure using the notion of contravariant connection introduced in [1], we will study some properties of manifold endowed with such compatible structures and we will give some examples.