群上的渐近相似关系

Pub Date : 2021-11-10 DOI:10.36045/j.bbms.200314
Sh. Kalantari
{"title":"群上的渐近相似关系","authors":"Sh. Kalantari","doi":"10.36045/j.bbms.200314","DOIUrl":null,"url":null,"abstract":"In this paper, we study properties of asymptotic resemblance relations induced by compatible coarse structures on groups. We generalize the notion of asymptotic dimensiongrad for groups with compatible coarse structures and show this notion is coarse invariant. We end by defining the notion of set theoretic coupling for groups with compatible coarse structures and showing this notion is the generalization of the notion of topological coupling for finitely generated groups. We show if two groups with compatible coarse structures admit a set theoretic coupling then they are asymptotic equivalent.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic resemblance relations on Groups\",\"authors\":\"Sh. Kalantari\",\"doi\":\"10.36045/j.bbms.200314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study properties of asymptotic resemblance relations induced by compatible coarse structures on groups. We generalize the notion of asymptotic dimensiongrad for groups with compatible coarse structures and show this notion is coarse invariant. We end by defining the notion of set theoretic coupling for groups with compatible coarse structures and showing this notion is the generalization of the notion of topological coupling for finitely generated groups. We show if two groups with compatible coarse structures admit a set theoretic coupling then they are asymptotic equivalent.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.36045/j.bbms.200314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.36045/j.bbms.200314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了群上相容粗结构引起的渐近相似关系的性质。推广了具有相容粗结构群的渐近维梯度的概念,并证明了这一概念是粗不变的。最后,我们定义了相容粗糙结构群的集合论耦合概念,并证明了这一概念是有限生成群的拓扑耦合概念的推广。我们证明了如果两个相容粗结构群允许集论耦合,那么它们是渐近等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Asymptotic resemblance relations on Groups
In this paper, we study properties of asymptotic resemblance relations induced by compatible coarse structures on groups. We generalize the notion of asymptotic dimensiongrad for groups with compatible coarse structures and show this notion is coarse invariant. We end by defining the notion of set theoretic coupling for groups with compatible coarse structures and showing this notion is the generalization of the notion of topological coupling for finitely generated groups. We show if two groups with compatible coarse structures admit a set theoretic coupling then they are asymptotic equivalent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信