基于决策级融合的多波长数据自动探测火星沙尘暴

Q1 Computer Science
Keisuke Maeda, Takahiro Ogawa, M. Haseyama
{"title":"基于决策级融合的多波长数据自动探测火星沙尘暴","authors":"Keisuke Maeda, Takahiro Ogawa, M. Haseyama","doi":"10.2197/ipsjtcva.7.79","DOIUrl":null,"url":null,"abstract":"This paper presents automatic Martian dust storm detection from multiple wavelength data based on decision level fusion. In our proposed method, visual features are first extracted from multiple wavelength data, and optimal features are selected for Martian dust storm detection based on the minimal-Redundancy-Maximal-Relevance algorithm. Second, the selected visual features are used to train the Support Vector Machine classifiers that are constructed on each data. Furthermore, as a main contribution of this paper, the proposed method integrates the multiple detection results obtained from heterogeneous data based on decision level fusion, while considering each classifier’s detection performance to obtain accurate final detection results. Consequently, the proposed method realizes successful Martian dust storm detection.","PeriodicalId":38957,"journal":{"name":"IPSJ Transactions on Computer Vision and Applications","volume":"51 7 1","pages":"79-83"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Automatic Martian Dust Storm Detection from Multiple Wavelength Data Based on Decision Level Fusion\",\"authors\":\"Keisuke Maeda, Takahiro Ogawa, M. Haseyama\",\"doi\":\"10.2197/ipsjtcva.7.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents automatic Martian dust storm detection from multiple wavelength data based on decision level fusion. In our proposed method, visual features are first extracted from multiple wavelength data, and optimal features are selected for Martian dust storm detection based on the minimal-Redundancy-Maximal-Relevance algorithm. Second, the selected visual features are used to train the Support Vector Machine classifiers that are constructed on each data. Furthermore, as a main contribution of this paper, the proposed method integrates the multiple detection results obtained from heterogeneous data based on decision level fusion, while considering each classifier’s detection performance to obtain accurate final detection results. Consequently, the proposed method realizes successful Martian dust storm detection.\",\"PeriodicalId\":38957,\"journal\":{\"name\":\"IPSJ Transactions on Computer Vision and Applications\",\"volume\":\"51 7 1\",\"pages\":\"79-83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSJ Transactions on Computer Vision and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/ipsjtcva.7.79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Computer Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtcva.7.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于决策级融合的多波长火星沙尘暴自动探测方法。该方法首先从多波长数据中提取视觉特征,并基于最小冗余度-最大相关性算法选择最优特征用于火星沙尘暴检测。其次,选择的视觉特征用于训练在每个数据上构建的支持向量机分类器。此外,作为本文的主要贡献,该方法基于决策级融合对异构数据获得的多个检测结果进行集成,同时考虑各个分类器的检测性能,以获得准确的最终检测结果。结果表明,该方法成功实现了火星沙尘暴探测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Martian Dust Storm Detection from Multiple Wavelength Data Based on Decision Level Fusion
This paper presents automatic Martian dust storm detection from multiple wavelength data based on decision level fusion. In our proposed method, visual features are first extracted from multiple wavelength data, and optimal features are selected for Martian dust storm detection based on the minimal-Redundancy-Maximal-Relevance algorithm. Second, the selected visual features are used to train the Support Vector Machine classifiers that are constructed on each data. Furthermore, as a main contribution of this paper, the proposed method integrates the multiple detection results obtained from heterogeneous data based on decision level fusion, while considering each classifier’s detection performance to obtain accurate final detection results. Consequently, the proposed method realizes successful Martian dust storm detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IPSJ Transactions on Computer Vision and Applications
IPSJ Transactions on Computer Vision and Applications Computer Science-Computer Vision and Pattern Recognition
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信