油田作业条件下天青石结垢形成及抑制的半经验模型

Yue Zhao, Z. Dai, Chong Dai, Samridhdi Paudyal, Xin Wang, Saebom Ko, Xuanzhu Yao, Cianna Leschied, A. Kan, M. Tomson
{"title":"油田作业条件下天青石结垢形成及抑制的半经验模型","authors":"Yue Zhao, Z. Dai, Chong Dai, Samridhdi Paudyal, Xin Wang, Saebom Ko, Xuanzhu Yao, Cianna Leschied, A. Kan, M. Tomson","doi":"10.2118/204372-ms","DOIUrl":null,"url":null,"abstract":"\n Mineral scale formation has always been a serious problem during production. Most scales can be treated by adding threshold scale inhibitors. Several crystallization and inhibition models have previously been reported to predict the minimum inhibitor concentration (MIC) needed to control the barite and calcite scale. Recently, more attentions have been paid to the formation of celestite scale in the oilfield. However, no related models have been developed to help determine the MIC needed for the celestite scale control. Therefore, in this study, the crystallization and inhibition kinetics data of celestite under a wide range of celestite saturation index (SI = 0.7 – 2.6), temperature (T = 25 – 90 °C), ionic strength (IS = 1.075 – 3.075 M) and pH (4 – 6.7) with one phosphonate inhibitor (diethylenetriamine penta(methylene phosphonic acid, DTPMP) and two polymeric inhibitors (phophinopolycarboxylate, PPCA and polyvinyl sulfonate, PVS) were measured by laser apparatus or collected from previous studies. Then, based on the results, the celestite crystallization and inhibition models were established accordingly. Good agreements between the experimental results and calculated results from the models can be found. By using these newly developed models, the MIC needed for three commonly seen inhibitors, DTPMP, PPCA and PVS on celestite scale control can be predicted under extensive production conditions. The developed models can fill in the blank in scaling management strategies for high Sr2+ and SO42- concentrations in the produced waters.","PeriodicalId":11099,"journal":{"name":"Day 1 Mon, December 06, 2021","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Semiempirical Model for Predicting Celestite Scale Formation and Inhibition in Oilfield Operating Conditions\",\"authors\":\"Yue Zhao, Z. Dai, Chong Dai, Samridhdi Paudyal, Xin Wang, Saebom Ko, Xuanzhu Yao, Cianna Leschied, A. Kan, M. Tomson\",\"doi\":\"10.2118/204372-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Mineral scale formation has always been a serious problem during production. Most scales can be treated by adding threshold scale inhibitors. Several crystallization and inhibition models have previously been reported to predict the minimum inhibitor concentration (MIC) needed to control the barite and calcite scale. Recently, more attentions have been paid to the formation of celestite scale in the oilfield. However, no related models have been developed to help determine the MIC needed for the celestite scale control. Therefore, in this study, the crystallization and inhibition kinetics data of celestite under a wide range of celestite saturation index (SI = 0.7 – 2.6), temperature (T = 25 – 90 °C), ionic strength (IS = 1.075 – 3.075 M) and pH (4 – 6.7) with one phosphonate inhibitor (diethylenetriamine penta(methylene phosphonic acid, DTPMP) and two polymeric inhibitors (phophinopolycarboxylate, PPCA and polyvinyl sulfonate, PVS) were measured by laser apparatus or collected from previous studies. Then, based on the results, the celestite crystallization and inhibition models were established accordingly. Good agreements between the experimental results and calculated results from the models can be found. By using these newly developed models, the MIC needed for three commonly seen inhibitors, DTPMP, PPCA and PVS on celestite scale control can be predicted under extensive production conditions. The developed models can fill in the blank in scaling management strategies for high Sr2+ and SO42- concentrations in the produced waters.\",\"PeriodicalId\":11099,\"journal\":{\"name\":\"Day 1 Mon, December 06, 2021\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, December 06, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204372-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, December 06, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204372-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

矿垢的形成一直是生产过程中的一个严重问题。大多数垢可以通过添加阈值阻垢剂来处理。以前已经报道了几种结晶和抑制模型来预测控制重晶石和方解石垢所需的最小抑制剂浓度(MIC)。近年来,天青石垢在油田的形成受到越来越多的关注。然而,目前还没有相关的模型来帮助确定天青石尺度控制所需的MIC。因此,在这项研究中,天青石的结晶和抑制动力学的数据在一个广泛的天青石饱和指数(SI = 0.7 - 2.6),温度(T = 25 - 90°C),离子强度(= 1.075 - 3.075米)和pH值与一个膦酸酯(4 - 6.7)抑制剂(二乙三胺五甲叉膦酸,DTPMP)和两个聚合抑制剂(phophinopolycarboxylate、车牌提取和聚乙烯醇磺酸盐,pv)被激光测量装置或从先前的研究收集。在此基础上,建立了天青石结晶模型和缓蚀模型。实验结果与模型计算结果吻合较好。利用这些新建立的模型,可以在广泛的生产条件下预测三种常用抑制剂DTPMP、PPCA和PVS对天青石垢控制所需的MIC。所建立的模型可以填补采出水中高浓度Sr2+和SO42-结垢管理策略的空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Semiempirical Model for Predicting Celestite Scale Formation and Inhibition in Oilfield Operating Conditions
Mineral scale formation has always been a serious problem during production. Most scales can be treated by adding threshold scale inhibitors. Several crystallization and inhibition models have previously been reported to predict the minimum inhibitor concentration (MIC) needed to control the barite and calcite scale. Recently, more attentions have been paid to the formation of celestite scale in the oilfield. However, no related models have been developed to help determine the MIC needed for the celestite scale control. Therefore, in this study, the crystallization and inhibition kinetics data of celestite under a wide range of celestite saturation index (SI = 0.7 – 2.6), temperature (T = 25 – 90 °C), ionic strength (IS = 1.075 – 3.075 M) and pH (4 – 6.7) with one phosphonate inhibitor (diethylenetriamine penta(methylene phosphonic acid, DTPMP) and two polymeric inhibitors (phophinopolycarboxylate, PPCA and polyvinyl sulfonate, PVS) were measured by laser apparatus or collected from previous studies. Then, based on the results, the celestite crystallization and inhibition models were established accordingly. Good agreements between the experimental results and calculated results from the models can be found. By using these newly developed models, the MIC needed for three commonly seen inhibitors, DTPMP, PPCA and PVS on celestite scale control can be predicted under extensive production conditions. The developed models can fill in the blank in scaling management strategies for high Sr2+ and SO42- concentrations in the produced waters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信