同步参照系下电弹簧综合建模

Stefano Giacomuzzi, M. Bertoluzzo
{"title":"同步参照系下电弹簧综合建模","authors":"Stefano Giacomuzzi, M. Bertoluzzo","doi":"10.23919/AEIT50178.2020.9241193","DOIUrl":null,"url":null,"abstract":"Electric Spring (ES) is one of the most promising technologies to stabilize the supply voltage of the critical loads of a user. Different versions and evolutions of ES have been proposed, whose novelties mostly stand in their circuital architecture and steady-state behavior. Nevertheless, a dynamic model of a single-phase user load equipped with ES have not been investigated yet for loads of resistive-inductive type. In this paper such a modeling is performed, disregarding its control strategy and if it whether exchanges only reactive or both active and reactive power. The obtained model has the peculiarity of being universal for a user load equipped with ES and the possibility of being applied for the development of any control strategy. At first, the time-domain equations relevant to the circuit are derived to achieve the state-space model. Subsequently, the equations that uses the dq components of the circuit quantities in a synchronous reference frame are derived, obtaining the state-space model in dq. The verification of such a modeling is performed through comparison of its outputs with those from the circuital simulation in the Simulink/Matlab environment of the whole circuit. As final step, the convenience of the state-space model is discussed for different ES control strategies.","PeriodicalId":6689,"journal":{"name":"2020 AEIT International Annual Conference (AEIT)","volume":"25 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Electric Spring Modeling in a Synchronous Reference Frame\",\"authors\":\"Stefano Giacomuzzi, M. Bertoluzzo\",\"doi\":\"10.23919/AEIT50178.2020.9241193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electric Spring (ES) is one of the most promising technologies to stabilize the supply voltage of the critical loads of a user. Different versions and evolutions of ES have been proposed, whose novelties mostly stand in their circuital architecture and steady-state behavior. Nevertheless, a dynamic model of a single-phase user load equipped with ES have not been investigated yet for loads of resistive-inductive type. In this paper such a modeling is performed, disregarding its control strategy and if it whether exchanges only reactive or both active and reactive power. The obtained model has the peculiarity of being universal for a user load equipped with ES and the possibility of being applied for the development of any control strategy. At first, the time-domain equations relevant to the circuit are derived to achieve the state-space model. Subsequently, the equations that uses the dq components of the circuit quantities in a synchronous reference frame are derived, obtaining the state-space model in dq. The verification of such a modeling is performed through comparison of its outputs with those from the circuital simulation in the Simulink/Matlab environment of the whole circuit. As final step, the convenience of the state-space model is discussed for different ES control strategies.\",\"PeriodicalId\":6689,\"journal\":{\"name\":\"2020 AEIT International Annual Conference (AEIT)\",\"volume\":\"25 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 AEIT International Annual Conference (AEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/AEIT50178.2020.9241193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 AEIT International Annual Conference (AEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AEIT50178.2020.9241193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电弹簧(ES)是稳定用户临界负载供电电压的最有前途的技术之一。人们提出了ES的不同版本和演变,其新颖之处主要在于它们的电路结构和稳态行为。然而,对于电阻-电感型负载,单相用户负载的动态模型尚未研究。本文不考虑其控制策略,也不考虑其是只交换无功功率还是同时交换有功和无功功率。所得到的模型对具有ES的用户负载具有通用性,并且可以应用于任何控制策略的开发。首先推导了与电路相关的时域方程,实现了电路的状态空间模型。在此基础上,推导了利用同步参考系中电路量的dq分量的方程,得到了dq中的状态空间模型。通过将该模型的输出与整个电路在Simulink/Matlab环境下的电路仿真输出进行比较,验证了该模型的正确性。最后,讨论了状态空间模型在不同ES控制策略下的便利性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comprehensive Electric Spring Modeling in a Synchronous Reference Frame
Electric Spring (ES) is one of the most promising technologies to stabilize the supply voltage of the critical loads of a user. Different versions and evolutions of ES have been proposed, whose novelties mostly stand in their circuital architecture and steady-state behavior. Nevertheless, a dynamic model of a single-phase user load equipped with ES have not been investigated yet for loads of resistive-inductive type. In this paper such a modeling is performed, disregarding its control strategy and if it whether exchanges only reactive or both active and reactive power. The obtained model has the peculiarity of being universal for a user load equipped with ES and the possibility of being applied for the development of any control strategy. At first, the time-domain equations relevant to the circuit are derived to achieve the state-space model. Subsequently, the equations that uses the dq components of the circuit quantities in a synchronous reference frame are derived, obtaining the state-space model in dq. The verification of such a modeling is performed through comparison of its outputs with those from the circuital simulation in the Simulink/Matlab environment of the whole circuit. As final step, the convenience of the state-space model is discussed for different ES control strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信