钛对二苯并噻吩在Ni2P上加氢脱硫性能的影响

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL
C. Han, Hua Song, N. Jiang, Yanguang Chen, Feng Li, Tianzhen Hao
{"title":"钛对二苯并噻吩在Ni2P上加氢脱硫性能的影响","authors":"C. Han, Hua Song, N. Jiang, Yanguang Chen, Feng Li, Tianzhen Hao","doi":"10.1177/1468678319825693","DOIUrl":null,"url":null,"abstract":"A series of Ti-incorporated bulk Ni2P catalysts was prepared by means of temperature-programmed reduction, and the role of metallic Ti on the structure and catalytic activity of the Ni2P catalysts was studied. For this purpose, bulk Ni2P catalysts with metal Ti contents of 0.005 wt%, 0.01 wt%, and 0.02 wt% were synthesized. X-ray diffraction, CO uptake, Brunauer–Emmett–Teller measurements, and X-ray photoelectron spectroscopy were utilized to characterize the catalysts. Addition of titanium could increase the surface area and promote the formation of small, highly dispersed Ni2P particles. The Ti0.02-Ni2P system with a Ti molar fraction of 0.02 showed the highest hydrodesulfurization activity of 99.6%, which was an increase of 44% compared with that found for the bulk Ni2P.","PeriodicalId":20859,"journal":{"name":"Progress in Reaction Kinetics and Mechanism","volume":"29 1","pages":"45 - 54"},"PeriodicalIF":2.1000,"publicationDate":"2019-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Ti on dibenzothiophene hydrodesulfurization performance over bulk Ni2P\",\"authors\":\"C. Han, Hua Song, N. Jiang, Yanguang Chen, Feng Li, Tianzhen Hao\",\"doi\":\"10.1177/1468678319825693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A series of Ti-incorporated bulk Ni2P catalysts was prepared by means of temperature-programmed reduction, and the role of metallic Ti on the structure and catalytic activity of the Ni2P catalysts was studied. For this purpose, bulk Ni2P catalysts with metal Ti contents of 0.005 wt%, 0.01 wt%, and 0.02 wt% were synthesized. X-ray diffraction, CO uptake, Brunauer–Emmett–Teller measurements, and X-ray photoelectron spectroscopy were utilized to characterize the catalysts. Addition of titanium could increase the surface area and promote the formation of small, highly dispersed Ni2P particles. The Ti0.02-Ni2P system with a Ti molar fraction of 0.02 showed the highest hydrodesulfurization activity of 99.6%, which was an increase of 44% compared with that found for the bulk Ni2P.\",\"PeriodicalId\":20859,\"journal\":{\"name\":\"Progress in Reaction Kinetics and Mechanism\",\"volume\":\"29 1\",\"pages\":\"45 - 54\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2019-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Reaction Kinetics and Mechanism\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/1468678319825693\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Reaction Kinetics and Mechanism","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/1468678319825693","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用程序升温还原法制备了Ti掺杂Ni2P本体催化剂,研究了金属Ti对Ni2P催化剂结构和催化活性的影响。为此,合成了金属Ti含量分别为0.005 wt%、0.01 wt%和0.02 wt%的大块Ni2P催化剂。利用x射线衍射、CO吸收、brunauer - emmet - teller测量和x射线光电子能谱对催化剂进行了表征。钛的加入增加了表面面积,促进了小的、高度分散的Ni2P颗粒的形成。Ti摩尔分数为0.02时,Ti0.02-Ni2P体系的加氢脱硫活性最高,达到99.6%,比本体Ni2P体系的加氢脱硫活性提高44%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Ti on dibenzothiophene hydrodesulfurization performance over bulk Ni2P
A series of Ti-incorporated bulk Ni2P catalysts was prepared by means of temperature-programmed reduction, and the role of metallic Ti on the structure and catalytic activity of the Ni2P catalysts was studied. For this purpose, bulk Ni2P catalysts with metal Ti contents of 0.005 wt%, 0.01 wt%, and 0.02 wt% were synthesized. X-ray diffraction, CO uptake, Brunauer–Emmett–Teller measurements, and X-ray photoelectron spectroscopy were utilized to characterize the catalysts. Addition of titanium could increase the surface area and promote the formation of small, highly dispersed Ni2P particles. The Ti0.02-Ni2P system with a Ti molar fraction of 0.02 showed the highest hydrodesulfurization activity of 99.6%, which was an increase of 44% compared with that found for the bulk Ni2P.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
5
审稿时长
2.3 months
期刊介绍: The journal covers the fields of kinetics and mechanisms of chemical processes in the gas phase and solution of both simple and complex systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信