R. Ulbricht, Claudio Hartmann, M. Hahmann, H. Donker, Wolfgang Lehner
{"title":"基于网络的预测系统基准:ECAST平台","authors":"R. Ulbricht, Claudio Hartmann, M. Hahmann, H. Donker, Wolfgang Lehner","doi":"10.1145/2882903.2899399","DOIUrl":null,"url":null,"abstract":"The role of precise forecasts in the energy domain has changed dramatically. New supply forecasting methods are developed to better address this challenge, but meaningful benchmarks are rare and time-intensive. We propose the ECAST online platform in order to solve that problem. The system's capability is demonstrated on a real-world use case by comparing the performance of different prediction tools.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Web-based Benchmarks for Forecasting Systems: The ECAST Platform\",\"authors\":\"R. Ulbricht, Claudio Hartmann, M. Hahmann, H. Donker, Wolfgang Lehner\",\"doi\":\"10.1145/2882903.2899399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The role of precise forecasts in the energy domain has changed dramatically. New supply forecasting methods are developed to better address this challenge, but meaningful benchmarks are rare and time-intensive. We propose the ECAST online platform in order to solve that problem. The system's capability is demonstrated on a real-world use case by comparing the performance of different prediction tools.\",\"PeriodicalId\":20483,\"journal\":{\"name\":\"Proceedings of the 2016 International Conference on Management of Data\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2882903.2899399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2899399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Web-based Benchmarks for Forecasting Systems: The ECAST Platform
The role of precise forecasts in the energy domain has changed dramatically. New supply forecasting methods are developed to better address this challenge, but meaningful benchmarks are rare and time-intensive. We propose the ECAST online platform in order to solve that problem. The system's capability is demonstrated on a real-world use case by comparing the performance of different prediction tools.