基于网络的预测系统基准:ECAST平台

R. Ulbricht, Claudio Hartmann, M. Hahmann, H. Donker, Wolfgang Lehner
{"title":"基于网络的预测系统基准:ECAST平台","authors":"R. Ulbricht, Claudio Hartmann, M. Hahmann, H. Donker, Wolfgang Lehner","doi":"10.1145/2882903.2899399","DOIUrl":null,"url":null,"abstract":"The role of precise forecasts in the energy domain has changed dramatically. New supply forecasting methods are developed to better address this challenge, but meaningful benchmarks are rare and time-intensive. We propose the ECAST online platform in order to solve that problem. The system's capability is demonstrated on a real-world use case by comparing the performance of different prediction tools.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Web-based Benchmarks for Forecasting Systems: The ECAST Platform\",\"authors\":\"R. Ulbricht, Claudio Hartmann, M. Hahmann, H. Donker, Wolfgang Lehner\",\"doi\":\"10.1145/2882903.2899399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The role of precise forecasts in the energy domain has changed dramatically. New supply forecasting methods are developed to better address this challenge, but meaningful benchmarks are rare and time-intensive. We propose the ECAST online platform in order to solve that problem. The system's capability is demonstrated on a real-world use case by comparing the performance of different prediction tools.\",\"PeriodicalId\":20483,\"journal\":{\"name\":\"Proceedings of the 2016 International Conference on Management of Data\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2882903.2899399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2899399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

精确预测在能源领域的作用发生了巨大变化。为了更好地应对这一挑战,开发了新的供应预测方法,但有意义的基准很少,而且耗时。为了解决这个问题,我们提出了ECAST在线平台。通过比较不同预测工具的性能,在实际用例中演示了系统的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Web-based Benchmarks for Forecasting Systems: The ECAST Platform
The role of precise forecasts in the energy domain has changed dramatically. New supply forecasting methods are developed to better address this challenge, but meaningful benchmarks are rare and time-intensive. We propose the ECAST online platform in order to solve that problem. The system's capability is demonstrated on a real-world use case by comparing the performance of different prediction tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信