基于图论层次聚类的改进迭代剪枝主成分分析

Chainarong Amornbunchornvej, T. Limpiti, A. Assawamakin, A. Intarapanich, S. Tongsima
{"title":"基于图论层次聚类的改进迭代剪枝主成分分析","authors":"Chainarong Amornbunchornvej, T. Limpiti, A. Assawamakin, A. Intarapanich, S. Tongsima","doi":"10.1109/ECTICON.2012.6254120","DOIUrl":null,"url":null,"abstract":"Various unsupervised clustering algorithms have been used to infer population structure in genetic data. The goals are to separate individuals of similar genetic characteristics into clusters and to estimate the number of clusters within each dataset. Among them, a framework called iterative pruning principal component analysis (ipPCA) have been developed. It performs PCA iteratively on subsets of data samples and clusters them using fuzzy c-mean. We believe that the choice of model-based clustering method affects the individual assignments and cluster quality, as well as the estimated number of clusters. Thus, in this paper we introduce a hierarchical tree clustering concept from graph theory, whose performance is independent of cluster shapes, into the ipPCA framework. We also add a PCA-based feature selection technique as a data pre-processing step to reduce data dimension and increase computational efficiency. The resulting algorithm is called HiClust-ipPCA. We illustrate the improved clustering results of the HiClust-ipPCA algorithm using 47-breed bovine and 28-breed sheep datasets.","PeriodicalId":6319,"journal":{"name":"2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology","volume":"38 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved iterative pruning principal component analysis with graph-theoretic hierarchical clustering\",\"authors\":\"Chainarong Amornbunchornvej, T. Limpiti, A. Assawamakin, A. Intarapanich, S. Tongsima\",\"doi\":\"10.1109/ECTICON.2012.6254120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various unsupervised clustering algorithms have been used to infer population structure in genetic data. The goals are to separate individuals of similar genetic characteristics into clusters and to estimate the number of clusters within each dataset. Among them, a framework called iterative pruning principal component analysis (ipPCA) have been developed. It performs PCA iteratively on subsets of data samples and clusters them using fuzzy c-mean. We believe that the choice of model-based clustering method affects the individual assignments and cluster quality, as well as the estimated number of clusters. Thus, in this paper we introduce a hierarchical tree clustering concept from graph theory, whose performance is independent of cluster shapes, into the ipPCA framework. We also add a PCA-based feature selection technique as a data pre-processing step to reduce data dimension and increase computational efficiency. The resulting algorithm is called HiClust-ipPCA. We illustrate the improved clustering results of the HiClust-ipPCA algorithm using 47-breed bovine and 28-breed sheep datasets.\",\"PeriodicalId\":6319,\"journal\":{\"name\":\"2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology\",\"volume\":\"38 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTICON.2012.6254120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTICON.2012.6254120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

各种无监督聚类算法已被用于推断遗传数据中的群体结构。目标是将具有相似遗传特征的个体分成簇,并估计每个数据集中簇的数量。其中,提出了迭代剪枝主成分分析(ipPCA)框架。它对数据样本子集进行迭代主成分分析,并使用模糊c均值对它们进行聚类。我们认为,基于模型的聚类方法的选择会影响个体分配和聚类质量,以及估计的聚类数量。因此,本文将图论中的分层树聚类概念引入到ipPCA框架中,该概念的性能与聚类的形状无关。我们还增加了基于pca的特征选择技术作为数据预处理步骤,以降低数据维数并提高计算效率。得到的算法称为HiClust-ipPCA。我们使用47个品种的牛和28个品种的羊数据集来演示改进的HiClust-ipPCA算法的聚类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved iterative pruning principal component analysis with graph-theoretic hierarchical clustering
Various unsupervised clustering algorithms have been used to infer population structure in genetic data. The goals are to separate individuals of similar genetic characteristics into clusters and to estimate the number of clusters within each dataset. Among them, a framework called iterative pruning principal component analysis (ipPCA) have been developed. It performs PCA iteratively on subsets of data samples and clusters them using fuzzy c-mean. We believe that the choice of model-based clustering method affects the individual assignments and cluster quality, as well as the estimated number of clusters. Thus, in this paper we introduce a hierarchical tree clustering concept from graph theory, whose performance is independent of cluster shapes, into the ipPCA framework. We also add a PCA-based feature selection technique as a data pre-processing step to reduce data dimension and increase computational efficiency. The resulting algorithm is called HiClust-ipPCA. We illustrate the improved clustering results of the HiClust-ipPCA algorithm using 47-breed bovine and 28-breed sheep datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信