针对SHL挑战的多视图体系结构

Massinissa Hamidi, A. Osmani, Pegah Alizadeh
{"title":"针对SHL挑战的多视图体系结构","authors":"Massinissa Hamidi, A. Osmani, Pegah Alizadeh","doi":"10.1145/3410530.3414351","DOIUrl":null,"url":null,"abstract":"To recognize locomotion and transportation modes in a user-independent manner with an unknown target phone position, we (team Eagles) propose an approach based on two main steps: reduction of the impact of regular effects that stem from each phone position, followed by the recognition of the appropriate activity. The general architecture is composed of three groups of neural networks organized in the following order. The first group allows the recognition of the source, the second group allows the normalization of data to neutralize the impact of the source on the activity learning process, and the last group allows the recognition of the activity itself. We perform extensive experiments and the preliminary results encourage us to follow this direction, including the source learning to reduce the phone position's biases and activity separately.","PeriodicalId":7183,"journal":{"name":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A multi-view architecture for the SHL challenge\",\"authors\":\"Massinissa Hamidi, A. Osmani, Pegah Alizadeh\",\"doi\":\"10.1145/3410530.3414351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To recognize locomotion and transportation modes in a user-independent manner with an unknown target phone position, we (team Eagles) propose an approach based on two main steps: reduction of the impact of regular effects that stem from each phone position, followed by the recognition of the appropriate activity. The general architecture is composed of three groups of neural networks organized in the following order. The first group allows the recognition of the source, the second group allows the normalization of data to neutralize the impact of the source on the activity learning process, and the last group allows the recognition of the activity itself. We perform extensive experiments and the preliminary results encourage us to follow this direction, including the source learning to reduce the phone position's biases and activity separately.\",\"PeriodicalId\":7183,\"journal\":{\"name\":\"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3410530.3414351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3410530.3414351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

为了以用户独立的方式识别未知目标手机位置的移动和运输模式,我们(团队Eagles)提出了一种基于两个主要步骤的方法:减少来自每个手机位置的常规影响的影响,然后识别适当的活动。总体架构由按以下顺序组织的三组神经网络组成。第一组允许对源进行识别,第二组允许对数据进行规范化,以抵消源对活动学习过程的影响,最后一组允许对活动本身进行识别。我们进行了大量的实验,初步的结果鼓励我们遵循这个方向,包括源学习分别减少手机位置的偏差和活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-view architecture for the SHL challenge
To recognize locomotion and transportation modes in a user-independent manner with an unknown target phone position, we (team Eagles) propose an approach based on two main steps: reduction of the impact of regular effects that stem from each phone position, followed by the recognition of the appropriate activity. The general architecture is composed of three groups of neural networks organized in the following order. The first group allows the recognition of the source, the second group allows the normalization of data to neutralize the impact of the source on the activity learning process, and the last group allows the recognition of the activity itself. We perform extensive experiments and the preliminary results encourage us to follow this direction, including the source learning to reduce the phone position's biases and activity separately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信