{"title":"用倾向得分分层分析评价投球策略","authors":"Hiroshi Nakahara, K. Takeda, Keisuke Fujii","doi":"10.1515/jqas-2021-0060","DOIUrl":null,"url":null,"abstract":"Abstract Recent measurement technologies enable us to analyze baseball at higher levels of complexity. There are, however, still many unclear points around pitching strategy. There are two elements that make it difficult to measure the effect of a pitching strategy. First, most public datasets do not include location data where the catcher demands a ball, which is essential information to obtain the battery’s intent. Second, there are many confounders associated with pitching/batting results when evaluating pitching strategy. We here clarify the effect of pitching attempts to a specific location, e.g., inside or outside. We employ a causal inference framework called stratified analysis using a propensity score to evaluate the effects while removing the effect of confounding factors. We use a pitch-by-pitch dataset of Japanese professional baseball games held in 2014–2019, which includes location data where the catcher demands a ball. The results reveal that an outside pitching attempt is more effective than an inside one to minimize allowed run average. In addition, the stratified analysis shows that the outside pitching attempt is effective regardless of the magnitude of the estimated batter’s ability, and the proportion of pitched inside for pitcher/batter. Our analysis provides practical insights into selecting a pitching strategy to minimize allowed runs.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pitching strategy evaluation via stratified analysis using propensity score\",\"authors\":\"Hiroshi Nakahara, K. Takeda, Keisuke Fujii\",\"doi\":\"10.1515/jqas-2021-0060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recent measurement technologies enable us to analyze baseball at higher levels of complexity. There are, however, still many unclear points around pitching strategy. There are two elements that make it difficult to measure the effect of a pitching strategy. First, most public datasets do not include location data where the catcher demands a ball, which is essential information to obtain the battery’s intent. Second, there are many confounders associated with pitching/batting results when evaluating pitching strategy. We here clarify the effect of pitching attempts to a specific location, e.g., inside or outside. We employ a causal inference framework called stratified analysis using a propensity score to evaluate the effects while removing the effect of confounding factors. We use a pitch-by-pitch dataset of Japanese professional baseball games held in 2014–2019, which includes location data where the catcher demands a ball. The results reveal that an outside pitching attempt is more effective than an inside one to minimize allowed run average. In addition, the stratified analysis shows that the outside pitching attempt is effective regardless of the magnitude of the estimated batter’s ability, and the proportion of pitched inside for pitcher/batter. Our analysis provides practical insights into selecting a pitching strategy to minimize allowed runs.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jqas-2021-0060\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jqas-2021-0060","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Pitching strategy evaluation via stratified analysis using propensity score
Abstract Recent measurement technologies enable us to analyze baseball at higher levels of complexity. There are, however, still many unclear points around pitching strategy. There are two elements that make it difficult to measure the effect of a pitching strategy. First, most public datasets do not include location data where the catcher demands a ball, which is essential information to obtain the battery’s intent. Second, there are many confounders associated with pitching/batting results when evaluating pitching strategy. We here clarify the effect of pitching attempts to a specific location, e.g., inside or outside. We employ a causal inference framework called stratified analysis using a propensity score to evaluate the effects while removing the effect of confounding factors. We use a pitch-by-pitch dataset of Japanese professional baseball games held in 2014–2019, which includes location data where the catcher demands a ball. The results reveal that an outside pitching attempt is more effective than an inside one to minimize allowed run average. In addition, the stratified analysis shows that the outside pitching attempt is effective regardless of the magnitude of the estimated batter’s ability, and the proportion of pitched inside for pitcher/batter. Our analysis provides practical insights into selecting a pitching strategy to minimize allowed runs.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.