David Oswald, G. Scora, Nigel Williams, Peng Hao, M. Barth
{"title":"评估联网和自动驾驶汽车的环境影响:基于分类的排放模型的潜在缺陷","authors":"David Oswald, G. Scora, Nigel Williams, Peng Hao, M. Barth","doi":"10.1109/ITSC.2019.8917014","DOIUrl":null,"url":null,"abstract":"In addition to providing safety and mobility benefits, Connected and Automated Vehicles (CAVs) have the potential to reduce fuel consumption and emissions. As new CAV applications are developed, it is valuable to estimate these potential environmental benefits, typically using vehicle activity data and emissions models. To date, most researchers in the U.S. have used the MOVES vehicle emissions model, developed and maintained by the U.S. Environmental Protection Agency (EPA). However, because MOVES uses a binning approach, it is likely underestimating the true energy and emissions savings that occur when CAV applications smooth traffic flow. To illustrate this problem, we measure and model the fuel consumption and CO2 emissions for a real-world CAV application: Eco-Approach and Departure (EAD) at signalized intersections. Real-world measurements are compared to a MOVES-based estimate, as well as to an estimate provided by the physical-based Comprehensive Modal Emissions Model (CMEM). Results show that MOVES consistently underestimates the energy and emissions benefits of the CAV application, primarily since the bin sizes in MOVES are too large to catch the nuances of traffic smoothing. On the other hand, CMEM provided a more accurate energy and emissions estimate, primarily since it uses analytical functions to model emissions and does not suffer from the same binning problem.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"1 1","pages":"3639-3644"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Evaluating the Environmental Impacts of Connected and Automated Vehicles: Potential Shortcomings of a Binned-Based Emissions Model\",\"authors\":\"David Oswald, G. Scora, Nigel Williams, Peng Hao, M. Barth\",\"doi\":\"10.1109/ITSC.2019.8917014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In addition to providing safety and mobility benefits, Connected and Automated Vehicles (CAVs) have the potential to reduce fuel consumption and emissions. As new CAV applications are developed, it is valuable to estimate these potential environmental benefits, typically using vehicle activity data and emissions models. To date, most researchers in the U.S. have used the MOVES vehicle emissions model, developed and maintained by the U.S. Environmental Protection Agency (EPA). However, because MOVES uses a binning approach, it is likely underestimating the true energy and emissions savings that occur when CAV applications smooth traffic flow. To illustrate this problem, we measure and model the fuel consumption and CO2 emissions for a real-world CAV application: Eco-Approach and Departure (EAD) at signalized intersections. Real-world measurements are compared to a MOVES-based estimate, as well as to an estimate provided by the physical-based Comprehensive Modal Emissions Model (CMEM). Results show that MOVES consistently underestimates the energy and emissions benefits of the CAV application, primarily since the bin sizes in MOVES are too large to catch the nuances of traffic smoothing. On the other hand, CMEM provided a more accurate energy and emissions estimate, primarily since it uses analytical functions to model emissions and does not suffer from the same binning problem.\",\"PeriodicalId\":6717,\"journal\":{\"name\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"volume\":\"1 1\",\"pages\":\"3639-3644\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2019.8917014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8917014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluating the Environmental Impacts of Connected and Automated Vehicles: Potential Shortcomings of a Binned-Based Emissions Model
In addition to providing safety and mobility benefits, Connected and Automated Vehicles (CAVs) have the potential to reduce fuel consumption and emissions. As new CAV applications are developed, it is valuable to estimate these potential environmental benefits, typically using vehicle activity data and emissions models. To date, most researchers in the U.S. have used the MOVES vehicle emissions model, developed and maintained by the U.S. Environmental Protection Agency (EPA). However, because MOVES uses a binning approach, it is likely underestimating the true energy and emissions savings that occur when CAV applications smooth traffic flow. To illustrate this problem, we measure and model the fuel consumption and CO2 emissions for a real-world CAV application: Eco-Approach and Departure (EAD) at signalized intersections. Real-world measurements are compared to a MOVES-based estimate, as well as to an estimate provided by the physical-based Comprehensive Modal Emissions Model (CMEM). Results show that MOVES consistently underestimates the energy and emissions benefits of the CAV application, primarily since the bin sizes in MOVES are too large to catch the nuances of traffic smoothing. On the other hand, CMEM provided a more accurate energy and emissions estimate, primarily since it uses analytical functions to model emissions and does not suffer from the same binning problem.