Liwei Guo, Simin Li, Xing Jiang, Xin Liao, Lin Peng
{"title":"基于石墨烯的超宽带透射线性偏振器件","authors":"Liwei Guo, Simin Li, Xing Jiang, Xin Liao, Lin Peng","doi":"10.47037/2021.aces.j.360714","DOIUrl":null,"url":null,"abstract":"In order to achieve both adjustable wideband and high Polarization Conversion Rate (PCR) of the transmitted waves, a novelty tri-layered structure is proposed for terahertz applications. The Rhombus Hollow Square (RHS) is built up by top and bottom gold gratings on Silicon Dioxide and Polyamide substrate with graphene strips. The proposed polarizer broadens the bandwidth and has well performance. As chemical potential increases, the bandwidth is also broadened by adjusting the graphene. From 0.5 THz to 3 THz, the PCR is greater than 90%, and the relative bandwidth up to 142.9%. The transmission and absorption of polarizer are analyzed at the oblique incidence with chemical potential 0.1eV. By simulating and analyzing the performance, a new result of maintaining broadband and high transmittance in oblique incidence is obtained.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":"56 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ultra-wideband Transmissive Linear Polarization Device Based on Graphene\",\"authors\":\"Liwei Guo, Simin Li, Xing Jiang, Xin Liao, Lin Peng\",\"doi\":\"10.47037/2021.aces.j.360714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to achieve both adjustable wideband and high Polarization Conversion Rate (PCR) of the transmitted waves, a novelty tri-layered structure is proposed for terahertz applications. The Rhombus Hollow Square (RHS) is built up by top and bottom gold gratings on Silicon Dioxide and Polyamide substrate with graphene strips. The proposed polarizer broadens the bandwidth and has well performance. As chemical potential increases, the bandwidth is also broadened by adjusting the graphene. From 0.5 THz to 3 THz, the PCR is greater than 90%, and the relative bandwidth up to 142.9%. The transmission and absorption of polarizer are analyzed at the oblique incidence with chemical potential 0.1eV. By simulating and analyzing the performance, a new result of maintaining broadband and high transmittance in oblique incidence is obtained.\",\"PeriodicalId\":8207,\"journal\":{\"name\":\"Applied Computational Electromagnetics Society Journal\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computational Electromagnetics Society Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.47037/2021.aces.j.360714\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.47037/2021.aces.j.360714","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Ultra-wideband Transmissive Linear Polarization Device Based on Graphene
In order to achieve both adjustable wideband and high Polarization Conversion Rate (PCR) of the transmitted waves, a novelty tri-layered structure is proposed for terahertz applications. The Rhombus Hollow Square (RHS) is built up by top and bottom gold gratings on Silicon Dioxide and Polyamide substrate with graphene strips. The proposed polarizer broadens the bandwidth and has well performance. As chemical potential increases, the bandwidth is also broadened by adjusting the graphene. From 0.5 THz to 3 THz, the PCR is greater than 90%, and the relative bandwidth up to 142.9%. The transmission and absorption of polarizer are analyzed at the oblique incidence with chemical potential 0.1eV. By simulating and analyzing the performance, a new result of maintaining broadband and high transmittance in oblique incidence is obtained.
期刊介绍:
The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study.
The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed.
A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected.
The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.