多智能体系统中基于指责的不良行为处理策略

Sarah Edenhofer, Christopher Stifter, Uwe Jänen, Jan Kantert, Sven Tomforde, J. Hähner, C. Müller-Schloer
{"title":"多智能体系统中基于指责的不良行为处理策略","authors":"Sarah Edenhofer, Christopher Stifter, Uwe Jänen, Jan Kantert, Sven Tomforde, J. Hähner, C. Müller-Schloer","doi":"10.1109/ICAC.2015.69","DOIUrl":null,"url":null,"abstract":"Self-integration in open, distributed technical systems needs a mechanism for establishing and evaluating trust relationships to work in a stable and efficient manner. Based on a case study concerned with a Trusted Desktop Grid, this paper investigates techniques to isolate malicious agents. Therefore, we introduce a novel distributed strategy to identify and accuse nonbenevolentagents. Since intentionally bad behaviour is comparatively easy to detect, we further present novel agent types that either exploit the system or behave inconsistently. Afterwards, we demonstrate the potential benefit of the strategy in terms of simulations of the Trusted Desktop Grid and show that the overall system performance can be improved significantly.","PeriodicalId":6643,"journal":{"name":"2015 IEEE International Conference on Autonomic Computing","volume":"30 1","pages":"243-248"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An Accusation-Based Strategy to Handle Undesirable Behaviour in Multi-agent Systems\",\"authors\":\"Sarah Edenhofer, Christopher Stifter, Uwe Jänen, Jan Kantert, Sven Tomforde, J. Hähner, C. Müller-Schloer\",\"doi\":\"10.1109/ICAC.2015.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-integration in open, distributed technical systems needs a mechanism for establishing and evaluating trust relationships to work in a stable and efficient manner. Based on a case study concerned with a Trusted Desktop Grid, this paper investigates techniques to isolate malicious agents. Therefore, we introduce a novel distributed strategy to identify and accuse nonbenevolentagents. Since intentionally bad behaviour is comparatively easy to detect, we further present novel agent types that either exploit the system or behave inconsistently. Afterwards, we demonstrate the potential benefit of the strategy in terms of simulations of the Trusted Desktop Grid and show that the overall system performance can be improved significantly.\",\"PeriodicalId\":6643,\"journal\":{\"name\":\"2015 IEEE International Conference on Autonomic Computing\",\"volume\":\"30 1\",\"pages\":\"243-248\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Autonomic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAC.2015.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Autonomic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC.2015.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

开放、分布式技术系统中的自集成需要一种机制来建立和评估信任关系,以稳定有效的方式工作。本文以可信桌面网格为例,研究了隔离恶意代理的技术。因此,我们引入了一种新的分布式策略来识别和指责不仁慈的代理。由于故意的不良行为相对容易检测,我们进一步提出了利用系统或行为不一致的新型代理类型。然后,我们在可信桌面网格的模拟方面展示了该策略的潜在好处,并表明整体系统性能可以得到显着提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Accusation-Based Strategy to Handle Undesirable Behaviour in Multi-agent Systems
Self-integration in open, distributed technical systems needs a mechanism for establishing and evaluating trust relationships to work in a stable and efficient manner. Based on a case study concerned with a Trusted Desktop Grid, this paper investigates techniques to isolate malicious agents. Therefore, we introduce a novel distributed strategy to identify and accuse nonbenevolentagents. Since intentionally bad behaviour is comparatively easy to detect, we further present novel agent types that either exploit the system or behave inconsistently. Afterwards, we demonstrate the potential benefit of the strategy in terms of simulations of the Trusted Desktop Grid and show that the overall system performance can be improved significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信