{"title":"细钢预埋混凝土板地板辐射采暖系统的热性能","authors":"K. Tota-Maharaj, B. Adeleke","doi":"10.1680/jener.21.00118","DOIUrl":null,"url":null,"abstract":"This paper investigated the application of recycled steel powder as an additive in concrete to increase the thermal properties of radiant floor heating systems (RFHS). The project aimed to increase the efficiencies of thermal conductivities, allowing radiant heat to produce higher energy efficient outputs for heating. Thermocouple readings measured lower temperatures with similar heating conditions as a standard mix slab due to heat transfer occurring evenly through a large surface area, thus transferring heat to the air at faster rates. The tests were completed by casting two 400×400×200mm deep slabs enclosing radiant heating pipes. Water was pumped at 40 and 60oC through the pipes. The temperature was recorded at various positions throughout the slab that would allow the multi-layered cylinder approach to analyse the rate of heat transfer, and calculate the efficiency of the heat transfer. The crushing strength of the proposed mix using steel powder replacement is shown to be reduced by 26% when a mix with 12.4% of steel powder is used. Contrary to the original hypothesis of this research, the investigation found rates of heat transfer during the heating stage were 3% lower for the mix containing steel powder compared to the standard mix.","PeriodicalId":48776,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Energy","volume":"20 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Performance of Radiant Floor Heating Systems Concrete Slabs with Embedded Fine Steel\",\"authors\":\"K. Tota-Maharaj, B. Adeleke\",\"doi\":\"10.1680/jener.21.00118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigated the application of recycled steel powder as an additive in concrete to increase the thermal properties of radiant floor heating systems (RFHS). The project aimed to increase the efficiencies of thermal conductivities, allowing radiant heat to produce higher energy efficient outputs for heating. Thermocouple readings measured lower temperatures with similar heating conditions as a standard mix slab due to heat transfer occurring evenly through a large surface area, thus transferring heat to the air at faster rates. The tests were completed by casting two 400×400×200mm deep slabs enclosing radiant heating pipes. Water was pumped at 40 and 60oC through the pipes. The temperature was recorded at various positions throughout the slab that would allow the multi-layered cylinder approach to analyse the rate of heat transfer, and calculate the efficiency of the heat transfer. The crushing strength of the proposed mix using steel powder replacement is shown to be reduced by 26% when a mix with 12.4% of steel powder is used. Contrary to the original hypothesis of this research, the investigation found rates of heat transfer during the heating stage were 3% lower for the mix containing steel powder compared to the standard mix.\",\"PeriodicalId\":48776,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers-Energy\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers-Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jener.21.00118\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jener.21.00118","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Thermal Performance of Radiant Floor Heating Systems Concrete Slabs with Embedded Fine Steel
This paper investigated the application of recycled steel powder as an additive in concrete to increase the thermal properties of radiant floor heating systems (RFHS). The project aimed to increase the efficiencies of thermal conductivities, allowing radiant heat to produce higher energy efficient outputs for heating. Thermocouple readings measured lower temperatures with similar heating conditions as a standard mix slab due to heat transfer occurring evenly through a large surface area, thus transferring heat to the air at faster rates. The tests were completed by casting two 400×400×200mm deep slabs enclosing radiant heating pipes. Water was pumped at 40 and 60oC through the pipes. The temperature was recorded at various positions throughout the slab that would allow the multi-layered cylinder approach to analyse the rate of heat transfer, and calculate the efficiency of the heat transfer. The crushing strength of the proposed mix using steel powder replacement is shown to be reduced by 26% when a mix with 12.4% of steel powder is used. Contrary to the original hypothesis of this research, the investigation found rates of heat transfer during the heating stage were 3% lower for the mix containing steel powder compared to the standard mix.
期刊介绍:
Energy addresses the challenges of energy engineering in the 21st century. The journal publishes groundbreaking papers on energy provision by leading figures in industry and academia and provides a unique forum for discussion on everything from underground coal gasification to the practical implications of biofuels. The journal is a key resource for engineers and researchers working to meet the challenges of energy engineering. Topics addressed include: development of sustainable energy policy, energy efficiency in buildings, infrastructure and transport systems, renewable energy sources, operation and decommissioning of projects, and energy conservation.