赛车游戏中的个性化赛道设计

Theodosis Georgiou, Y. Demiris
{"title":"赛车游戏中的个性化赛道设计","authors":"Theodosis Georgiou, Y. Demiris","doi":"10.1109/CIG.2016.7860435","DOIUrl":null,"url":null,"abstract":"Real-time adaptation of computer games' content to the users' skills and abilities can enhance the player's engagement and immersion. Understanding of the user's potential while playing is of high importance in order to allow the successful procedural generation of user-tailored content. We investigate how player models can be created in car racing games. Our user model uses a combination of data from unobtrusive sensors, while the user is playing a car racing simulator. It extracts features through machine learning techniques, which are then used to comprehend the user's gameplay, by utilising the educational theoretical frameworks of the Concept of Flow and Zone of Proximal Development. The end result is to provide at a next stage a new track that fits to the user needs, which aids both the training of the driver and their engagement in the game. In order to validate that the system is designing personalised tracks, we associated the average performance from 41 users that played the game, with the difficulty factor of the generated track. In addition, the variation in paths of the implemented tracks between users provides a good indicator for the suitability of the system.","PeriodicalId":6594,"journal":{"name":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"49 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Personalised track design in car racing games\",\"authors\":\"Theodosis Georgiou, Y. Demiris\",\"doi\":\"10.1109/CIG.2016.7860435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time adaptation of computer games' content to the users' skills and abilities can enhance the player's engagement and immersion. Understanding of the user's potential while playing is of high importance in order to allow the successful procedural generation of user-tailored content. We investigate how player models can be created in car racing games. Our user model uses a combination of data from unobtrusive sensors, while the user is playing a car racing simulator. It extracts features through machine learning techniques, which are then used to comprehend the user's gameplay, by utilising the educational theoretical frameworks of the Concept of Flow and Zone of Proximal Development. The end result is to provide at a next stage a new track that fits to the user needs, which aids both the training of the driver and their engagement in the game. In order to validate that the system is designing personalised tracks, we associated the average performance from 41 users that played the game, with the difficulty factor of the generated track. In addition, the variation in paths of the implemented tracks between users provides a good indicator for the suitability of the system.\",\"PeriodicalId\":6594,\"journal\":{\"name\":\"2016 IEEE Conference on Computational Intelligence and Games (CIG)\",\"volume\":\"49 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computational Intelligence and Games (CIG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2016.7860435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2016.7860435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

将电脑游戏的内容根据用户的技能和能力进行实时调整,可以增强玩家的粘性和沉浸感。理解用户在玩游戏时的潜力对于成功生成用户定制内容非常重要。我们将研究如何在赛车游戏中创建玩家模型。我们的用户模型使用来自不显眼的传感器的数据组合,而用户正在玩赛车模拟器。它通过机器学习技术提取特征,然后利用流概念和最近发展区的教育理论框架来理解用户的游戏玩法。最终结果是在下一阶段提供符合用户需求的新赛道,这既有助于驾驶员的培训,也有助于他们在游戏中的参与度。为了验证系统是否在设计个性化的曲目,我们将41名玩家的平均表现与生成曲目的难度系数联系起来。此外,在用户之间实现的轨道路径的变化为系统的适用性提供了一个很好的指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Personalised track design in car racing games
Real-time adaptation of computer games' content to the users' skills and abilities can enhance the player's engagement and immersion. Understanding of the user's potential while playing is of high importance in order to allow the successful procedural generation of user-tailored content. We investigate how player models can be created in car racing games. Our user model uses a combination of data from unobtrusive sensors, while the user is playing a car racing simulator. It extracts features through machine learning techniques, which are then used to comprehend the user's gameplay, by utilising the educational theoretical frameworks of the Concept of Flow and Zone of Proximal Development. The end result is to provide at a next stage a new track that fits to the user needs, which aids both the training of the driver and their engagement in the game. In order to validate that the system is designing personalised tracks, we associated the average performance from 41 users that played the game, with the difficulty factor of the generated track. In addition, the variation in paths of the implemented tracks between users provides a good indicator for the suitability of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信