{"title":"无限的言语和普遍的自由行动","authors":"O. Kharlampovich, A. Myasnikov, Denis Serbin","doi":"10.1515/gcc-2014-0005","DOIUrl":null,"url":null,"abstract":"Abstract. This is the second paper in a series of four, where we take on the unified theory of non-Archimedean group actions, length functions and infinite words. Here, for an arbitrary group G of infinite words over an ordered abelian group Λ we construct a Λ-tree Γ G $\\Gamma _G$ equipped with a free action of G. Moreover, we show that Γ G $\\Gamma _G$ is a universal tree for G in the sense that it isometrically and equivariantly embeds into every Λ-tree equipped with a free G-action compatible with the original length function on G. Also, for a group G acting freely on a Λ-tree Γ we show how one can easily obtain an embedding of G into the set of reduced infinite words R(Λ,X)$R(\\Lambda , X)$ , where the alphabet X is obtained from the action G on Γ.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"170 1","pages":"55 - 69"},"PeriodicalIF":0.1000,"publicationDate":"2011-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Infinite words and universal free actions\",\"authors\":\"O. Kharlampovich, A. Myasnikov, Denis Serbin\",\"doi\":\"10.1515/gcc-2014-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. This is the second paper in a series of four, where we take on the unified theory of non-Archimedean group actions, length functions and infinite words. Here, for an arbitrary group G of infinite words over an ordered abelian group Λ we construct a Λ-tree Γ G $\\\\Gamma _G$ equipped with a free action of G. Moreover, we show that Γ G $\\\\Gamma _G$ is a universal tree for G in the sense that it isometrically and equivariantly embeds into every Λ-tree equipped with a free G-action compatible with the original length function on G. Also, for a group G acting freely on a Λ-tree Γ we show how one can easily obtain an embedding of G into the set of reduced infinite words R(Λ,X)$R(\\\\Lambda , X)$ , where the alphabet X is obtained from the action G on Γ.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"170 1\",\"pages\":\"55 - 69\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2011-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2014-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2014-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9
摘要
摘要这是四篇系列论文中的第二篇,我们将讨论非阿基米德群作用,长度函数和无限词的统一理论。在这里,对于有序阿贝尔群Λ上的任意无限词群G,我们构造了一个具有自由G作用的Λ-tree Γ G $\Gamma _G$,并且我们证明了Γ G $\Gamma _G$是G的一棵泛树,因为它等距地、等距地嵌入到每一个具有与G上的原始长度函数兼容的自由G作用的Λ-tree中。对于自由作用于Λ-tree Γ上的群G,我们展示了如何容易地将G嵌入到约简无限词集R(Λ,X) $R(\Lambda , X)$中,其中字母X是由作用于Γ上的G获得的。
Abstract. This is the second paper in a series of four, where we take on the unified theory of non-Archimedean group actions, length functions and infinite words. Here, for an arbitrary group G of infinite words over an ordered abelian group Λ we construct a Λ-tree Γ G $\Gamma _G$ equipped with a free action of G. Moreover, we show that Γ G $\Gamma _G$ is a universal tree for G in the sense that it isometrically and equivariantly embeds into every Λ-tree equipped with a free G-action compatible with the original length function on G. Also, for a group G acting freely on a Λ-tree Γ we show how one can easily obtain an embedding of G into the set of reduced infinite words R(Λ,X)$R(\Lambda , X)$ , where the alphabet X is obtained from the action G on Γ.