具有具有五维零根的六维可解乘法群的拓扑环

IF 0.3 Q4 MATHEMATICS
Á. Figula, Kornélia Ficzere, A. Al-Abayechi
{"title":"具有具有五维零根的六维可解乘法群的拓扑环","authors":"Á. Figula, Kornélia Ficzere, A. Al-Abayechi","doi":"10.33039/AMI.2019.08.001","DOIUrl":null,"url":null,"abstract":"Using connected transversals we determine the six-dimensional indecomposable solvable Lie groups with five-dimensional nilradical and their subgroups which are the multiplication groups and the inner mapping groups of three-dimensional connected simply connected topological loops. Together with this result we obtain that every six-dimensional indecomposable solvable Lie group which is the multiplication group of a three-dimensional topological loop has one-dimensional centre and twoor three-dimensional commutator subgroup.","PeriodicalId":43454,"journal":{"name":"Annales Mathematicae et Informaticae","volume":"30 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Topological loops with six-dimensional solvable multiplication groups having five-dimensional nilradical\",\"authors\":\"Á. Figula, Kornélia Ficzere, A. Al-Abayechi\",\"doi\":\"10.33039/AMI.2019.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using connected transversals we determine the six-dimensional indecomposable solvable Lie groups with five-dimensional nilradical and their subgroups which are the multiplication groups and the inner mapping groups of three-dimensional connected simply connected topological loops. Together with this result we obtain that every six-dimensional indecomposable solvable Lie group which is the multiplication group of a three-dimensional topological loop has one-dimensional centre and twoor three-dimensional commutator subgroup.\",\"PeriodicalId\":43454,\"journal\":{\"name\":\"Annales Mathematicae et Informaticae\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae et Informaticae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33039/AMI.2019.08.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae et Informaticae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33039/AMI.2019.08.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

利用连通截线确定了具有五维零根的六维不可分解可解李群及其子群,即三维连通单连通拓扑环的乘法群和内映射群。得到了每一个六维不可分解可解李群(即三维拓扑环的乘法群)都有一维中心和二维或三维换向子群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological loops with six-dimensional solvable multiplication groups having five-dimensional nilradical
Using connected transversals we determine the six-dimensional indecomposable solvable Lie groups with five-dimensional nilradical and their subgroups which are the multiplication groups and the inner mapping groups of three-dimensional connected simply connected topological loops. Together with this result we obtain that every six-dimensional indecomposable solvable Lie group which is the multiplication group of a three-dimensional topological loop has one-dimensional centre and twoor three-dimensional commutator subgroup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信