Pengfei Dang, Yumei Zhou, Lei Ding, J. Pang, Lei Zhang, X. Ding, Jun Sun, T. Lookman, D. Xue
{"title":"Ti 49.2Ni 40.8Cu 10块状合金的低疲劳大室温弹性热效应","authors":"Pengfei Dang, Yumei Zhou, Lei Ding, J. Pang, Lei Zhang, X. Ding, Jun Sun, T. Lookman, D. Xue","doi":"10.2139/ssrn.3927821","DOIUrl":null,"url":null,"abstract":"Large-scale applications of elastocaloric cooling demand bulk materials showing both large adiabatic temperature change (∆Tad) and low-fatigue characteristics at room temperature. Here we synthesize a bulk Ti49.2Ni40.8Cu10 polycrystalline alloy microstructurally featured by nanocrystalinity and epitaxially related Ti(Ni,Cu) 2 nanoprecipitates through cold-rolling and aging treatment. It exhibits a large ∆Tad of 13.8 K and a high coefficient of performance value of 13 at room temperature. Moreover, the degradation of ∆Tad is only 0.3 K after 450 tensile cycles. The results indicate that the alloy offers a good balance of multiple objectives, holding promise for solid-state refrigeration applications. We attribute the favorable properties to the enhanced reversibility of martensitic transformation during stress cycling, aided by the internal epitaxy-generated stress at the interface between the Ti(Ni,Cu)2 nanoprecipitates and matrix, together with grain refinement.","PeriodicalId":7755,"journal":{"name":"AMI: Acta Materialia","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Low-Fatigue and Large Room-Temperature Elastocaloric Effect in a Bulk Ti 49.2Ni 40.8Cu 10 Alloy\",\"authors\":\"Pengfei Dang, Yumei Zhou, Lei Ding, J. Pang, Lei Zhang, X. Ding, Jun Sun, T. Lookman, D. Xue\",\"doi\":\"10.2139/ssrn.3927821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale applications of elastocaloric cooling demand bulk materials showing both large adiabatic temperature change (∆Tad) and low-fatigue characteristics at room temperature. Here we synthesize a bulk Ti49.2Ni40.8Cu10 polycrystalline alloy microstructurally featured by nanocrystalinity and epitaxially related Ti(Ni,Cu) 2 nanoprecipitates through cold-rolling and aging treatment. It exhibits a large ∆Tad of 13.8 K and a high coefficient of performance value of 13 at room temperature. Moreover, the degradation of ∆Tad is only 0.3 K after 450 tensile cycles. The results indicate that the alloy offers a good balance of multiple objectives, holding promise for solid-state refrigeration applications. We attribute the favorable properties to the enhanced reversibility of martensitic transformation during stress cycling, aided by the internal epitaxy-generated stress at the interface between the Ti(Ni,Cu)2 nanoprecipitates and matrix, together with grain refinement.\",\"PeriodicalId\":7755,\"journal\":{\"name\":\"AMI: Acta Materialia\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMI: Acta Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3927821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMI: Acta Materialia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3927821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-Fatigue and Large Room-Temperature Elastocaloric Effect in a Bulk Ti 49.2Ni 40.8Cu 10 Alloy
Large-scale applications of elastocaloric cooling demand bulk materials showing both large adiabatic temperature change (∆Tad) and low-fatigue characteristics at room temperature. Here we synthesize a bulk Ti49.2Ni40.8Cu10 polycrystalline alloy microstructurally featured by nanocrystalinity and epitaxially related Ti(Ni,Cu) 2 nanoprecipitates through cold-rolling and aging treatment. It exhibits a large ∆Tad of 13.8 K and a high coefficient of performance value of 13 at room temperature. Moreover, the degradation of ∆Tad is only 0.3 K after 450 tensile cycles. The results indicate that the alloy offers a good balance of multiple objectives, holding promise for solid-state refrigeration applications. We attribute the favorable properties to the enhanced reversibility of martensitic transformation during stress cycling, aided by the internal epitaxy-generated stress at the interface between the Ti(Ni,Cu)2 nanoprecipitates and matrix, together with grain refinement.