流变特性和粘塑性流体在圆管和平行板中的流动的电子表格解决方案

N. Hatakeyama, Y. Shimizu, T. Masuyama
{"title":"流变特性和粘塑性流体在圆管和平行板中的流动的电子表格解决方案","authors":"N. Hatakeyama, Y. Shimizu, T. Masuyama","doi":"10.2473/JOURNALOFMMIJ.135.15","DOIUrl":null,"url":null,"abstract":"The rheological properties of cement slurries (including fresh concrete and high concentration paste for filling etc.) are complicated, therefore they are approximated by the Bingham plastic model. In recent years, the application of Herschel-Bulkley model is recommended for drilling mud. The rheological coefficients of these models are obtained by using measurement results of the rotational viscometer or experimental results of the flow in a circular pipe, and the pressure loss in pipe flows is obtained from these rheological coefficients. Therefor it is essential to properly select the model in order to design the slurry transportation. In the field of well drilling, the flow in a concentric annulus with a relatively large pipe diameter ratio is approximated by the flow in a parallel-plate, so it is also necessary to consider the flow in a parallel-plate. In this study, first, a method to determine the rheological coefficients by the least squares method from measurement results of the rotational viscometer using the function provided in a spreadsheet is shown and a method to quantitatively select the rheological model using Akaike's information criterion is also shown. Next, after the exact solutions of flows in a circular pipe and in a parallel-plate is summarized, an approximate expression of wall shear stress is derived and the error analysis is performed, and its effectiveness is confirmed by using past experimental data. In addition, a method of calculating the rheological coefficients by the least squares method from measurement results of flows in a circular pipe and in a parallel-plate using spreadsheet is shown and this method is practiced by using the experimental data of the flow in pipes.","PeriodicalId":16502,"journal":{"name":"Journal of Mmij","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spreadsheet Solutions for Rheological Properties and Viscoplastic Fluid Flow in Circular Pipes and in Parallel-plates\",\"authors\":\"N. Hatakeyama, Y. Shimizu, T. Masuyama\",\"doi\":\"10.2473/JOURNALOFMMIJ.135.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rheological properties of cement slurries (including fresh concrete and high concentration paste for filling etc.) are complicated, therefore they are approximated by the Bingham plastic model. In recent years, the application of Herschel-Bulkley model is recommended for drilling mud. The rheological coefficients of these models are obtained by using measurement results of the rotational viscometer or experimental results of the flow in a circular pipe, and the pressure loss in pipe flows is obtained from these rheological coefficients. Therefor it is essential to properly select the model in order to design the slurry transportation. In the field of well drilling, the flow in a concentric annulus with a relatively large pipe diameter ratio is approximated by the flow in a parallel-plate, so it is also necessary to consider the flow in a parallel-plate. In this study, first, a method to determine the rheological coefficients by the least squares method from measurement results of the rotational viscometer using the function provided in a spreadsheet is shown and a method to quantitatively select the rheological model using Akaike's information criterion is also shown. Next, after the exact solutions of flows in a circular pipe and in a parallel-plate is summarized, an approximate expression of wall shear stress is derived and the error analysis is performed, and its effectiveness is confirmed by using past experimental data. In addition, a method of calculating the rheological coefficients by the least squares method from measurement results of flows in a circular pipe and in a parallel-plate using spreadsheet is shown and this method is practiced by using the experimental data of the flow in pipes.\",\"PeriodicalId\":16502,\"journal\":{\"name\":\"Journal of Mmij\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mmij\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2473/JOURNALOFMMIJ.135.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mmij","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2473/JOURNALOFMMIJ.135.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水泥浆(包括新拌混凝土和高浓度填充膏体等)的流变特性比较复杂,因此可以用Bingham塑性模型进行近似。近年来,在钻井泥浆中推荐应用Herschel-Bulkley模型。这些模型的流变系数是利用旋转粘度计的测量结果或圆管内流动的实验结果得到的,并由这些流变系数得到管内流动的压力损失。因此,合理选择输浆模型是设计输浆系统的关键。在钻井领域中,管径比较大的同心环空内的流动近似为平行板内流动,因此也需要考虑平行板内流动。本文首先给出了利用电子表格提供的函数,利用最小二乘法从旋转粘度计的测量结果确定流变系数的方法,并给出了利用赤池信息准则定量选择流变模型的方法。其次,在总结了圆管内流动和平行板内流动的精确解的基础上,导出了壁面剪应力的近似表达式,并进行了误差分析,并用以往的实验数据验证了其有效性。此外,给出了利用电子表格对圆管内流动和平行板流动的测量结果进行最小二乘法计算流变系数的方法,并通过管道流动的实验数据进行了实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spreadsheet Solutions for Rheological Properties and Viscoplastic Fluid Flow in Circular Pipes and in Parallel-plates
The rheological properties of cement slurries (including fresh concrete and high concentration paste for filling etc.) are complicated, therefore they are approximated by the Bingham plastic model. In recent years, the application of Herschel-Bulkley model is recommended for drilling mud. The rheological coefficients of these models are obtained by using measurement results of the rotational viscometer or experimental results of the flow in a circular pipe, and the pressure loss in pipe flows is obtained from these rheological coefficients. Therefor it is essential to properly select the model in order to design the slurry transportation. In the field of well drilling, the flow in a concentric annulus with a relatively large pipe diameter ratio is approximated by the flow in a parallel-plate, so it is also necessary to consider the flow in a parallel-plate. In this study, first, a method to determine the rheological coefficients by the least squares method from measurement results of the rotational viscometer using the function provided in a spreadsheet is shown and a method to quantitatively select the rheological model using Akaike's information criterion is also shown. Next, after the exact solutions of flows in a circular pipe and in a parallel-plate is summarized, an approximate expression of wall shear stress is derived and the error analysis is performed, and its effectiveness is confirmed by using past experimental data. In addition, a method of calculating the rheological coefficients by the least squares method from measurement results of flows in a circular pipe and in a parallel-plate using spreadsheet is shown and this method is practiced by using the experimental data of the flow in pipes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信