信息检索的统计语言模型:综述

IF 8.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
ChengXiang Zhai
{"title":"信息检索的统计语言模型:综述","authors":"ChengXiang Zhai","doi":"10.1561/1500000008","DOIUrl":null,"url":null,"abstract":"Statistical language models have recently been successfully applied to many information retrieval problems. A great deal of recent work has shown that statistical language models not only lead to superior empirical performance, but also facilitate parameter tuning and open up possibilities for modeling nontraditional retrieval problems. In general, statistical language models provide a principled way of modeling various kinds of retrieval problems. The purpose of this survey is to systematically and critically review the existing work in applying statistical language models to information retrieval, summarize their contributions, and point out outstanding challenges.","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"79 1","pages":"137-213"},"PeriodicalIF":8.3000,"publicationDate":"2008-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"348","resultStr":"{\"title\":\"Statistical Language Models for Information Retrieval: A Critical Review\",\"authors\":\"ChengXiang Zhai\",\"doi\":\"10.1561/1500000008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical language models have recently been successfully applied to many information retrieval problems. A great deal of recent work has shown that statistical language models not only lead to superior empirical performance, but also facilitate parameter tuning and open up possibilities for modeling nontraditional retrieval problems. In general, statistical language models provide a principled way of modeling various kinds of retrieval problems. The purpose of this survey is to systematically and critically review the existing work in applying statistical language models to information retrieval, summarize their contributions, and point out outstanding challenges.\",\"PeriodicalId\":48829,\"journal\":{\"name\":\"Foundations and Trends in Information Retrieval\",\"volume\":\"79 1\",\"pages\":\"137-213\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2008-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"348\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations and Trends in Information Retrieval\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1561/1500000008\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Information Retrieval","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1561/1500000008","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 348

摘要

近年来,统计语言模型已成功地应用于许多信息检索问题。最近的大量工作表明,统计语言模型不仅具有优越的经验性能,而且有助于参数调优,并为非传统检索问题的建模开辟了可能性。一般来说,统计语言模型提供了一种对各种检索问题建模的原则性方法。本调查的目的是系统和批判性地回顾现有的将统计语言模型应用于信息检索的工作,总结他们的贡献,并指出突出的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Language Models for Information Retrieval: A Critical Review
Statistical language models have recently been successfully applied to many information retrieval problems. A great deal of recent work has shown that statistical language models not only lead to superior empirical performance, but also facilitate parameter tuning and open up possibilities for modeling nontraditional retrieval problems. In general, statistical language models provide a principled way of modeling various kinds of retrieval problems. The purpose of this survey is to systematically and critically review the existing work in applying statistical language models to information retrieval, summarize their contributions, and point out outstanding challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations and Trends in Information Retrieval
Foundations and Trends in Information Retrieval COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
39.10
自引率
0.00%
发文量
3
期刊介绍: The surge in research across all domains in the past decade has resulted in a plethora of new publications, causing an exponential growth in published research. Navigating through this extensive literature and staying current has become a time-consuming challenge. While electronic publishing provides instant access to more articles than ever, discerning the essential ones for a comprehensive understanding of any topic remains an issue. To tackle this, Foundations and Trends® in Information Retrieval - FnTIR - addresses the problem by publishing high-quality survey and tutorial monographs in the field. Each issue of Foundations and Trends® in Information Retrieval - FnT IR features a 50-100 page monograph authored by research leaders, covering tutorial subjects, research retrospectives, and survey papers that provide state-of-the-art reviews within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信