滑动尺度自治的飞行员技能水平和工作量预测

Sai K. R. Nittala, Colin P. Elkin, J. M. Kiker, R. Meyer, James Curro, Ali K. Reiter, Kevin S. Xu, V. Devabhaktuni
{"title":"滑动尺度自治的飞行员技能水平和工作量预测","authors":"Sai K. R. Nittala, Colin P. Elkin, J. M. Kiker, R. Meyer, James Curro, Ali K. Reiter, Kevin S. Xu, V. Devabhaktuni","doi":"10.1109/ICMLA.2018.00188","DOIUrl":null,"url":null,"abstract":"An emerging topic in human-computer interaction research involves optimal collaboration between humans and machines to achieve a particular goal. One approach to such a goal involves sliding-scale autonomy, in which a machine dynamically adjusts between different levels of autonomy based on a variety of measurements. In this paper, we propose a system to predict skill level and workload for aircraft pilots using machine learning algorithms. Our proposed system uses the pilot's heart rate variability and flight control data, including pilot inputs such as throttle and aileron, and flight sensor data such as latitude and longitude. We conduct a user study on 15 pilots, each flying the same 5 pre-defined routes on a flight simulator. Our results indicate that the flight control data alone are sufficient to provide a near-perfect classification of a pilot's skill level into expert or novice. On the other hand, predicting mental workload is much more difficult, and a combination of flight control and heart rate data is required to obtain an accurate estimate of mental workload. Our findings provide the first step towards a sliding-scale autonomous system for aviation.","PeriodicalId":6533,"journal":{"name":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"13 1","pages":"1166-1173"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Pilot Skill Level and Workload Prediction for Sliding-Scale Autonomy\",\"authors\":\"Sai K. R. Nittala, Colin P. Elkin, J. M. Kiker, R. Meyer, James Curro, Ali K. Reiter, Kevin S. Xu, V. Devabhaktuni\",\"doi\":\"10.1109/ICMLA.2018.00188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An emerging topic in human-computer interaction research involves optimal collaboration between humans and machines to achieve a particular goal. One approach to such a goal involves sliding-scale autonomy, in which a machine dynamically adjusts between different levels of autonomy based on a variety of measurements. In this paper, we propose a system to predict skill level and workload for aircraft pilots using machine learning algorithms. Our proposed system uses the pilot's heart rate variability and flight control data, including pilot inputs such as throttle and aileron, and flight sensor data such as latitude and longitude. We conduct a user study on 15 pilots, each flying the same 5 pre-defined routes on a flight simulator. Our results indicate that the flight control data alone are sufficient to provide a near-perfect classification of a pilot's skill level into expert or novice. On the other hand, predicting mental workload is much more difficult, and a combination of flight control and heart rate data is required to obtain an accurate estimate of mental workload. Our findings provide the first step towards a sliding-scale autonomous system for aviation.\",\"PeriodicalId\":6533,\"journal\":{\"name\":\"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"13 1\",\"pages\":\"1166-1173\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2018.00188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2018.00188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

人机交互研究中的一个新兴课题涉及人与机器之间的最佳协作以实现特定目标。实现这一目标的一种方法涉及滑动尺度自治,即机器根据各种测量值在不同的自治级别之间动态调整。在本文中,我们提出了一个使用机器学习算法预测飞机飞行员技能水平和工作量的系统。我们提出的系统使用飞行员的心率变异性和飞行控制数据,包括飞行员输入(如油门和副翼)和飞行传感器数据(如纬度和经度)。我们对15名飞行员进行了用户研究,每个飞行员在飞行模拟器上飞行相同的5条预定路线。我们的结果表明,飞行控制数据本身就足以提供一个近乎完美的分类飞行员的技能水平为专家或新手。另一方面,预测精神负荷要困难得多,需要结合飞行控制和心率数据来准确估计精神负荷。我们的研究结果为航空滑秤自主系统迈出了第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pilot Skill Level and Workload Prediction for Sliding-Scale Autonomy
An emerging topic in human-computer interaction research involves optimal collaboration between humans and machines to achieve a particular goal. One approach to such a goal involves sliding-scale autonomy, in which a machine dynamically adjusts between different levels of autonomy based on a variety of measurements. In this paper, we propose a system to predict skill level and workload for aircraft pilots using machine learning algorithms. Our proposed system uses the pilot's heart rate variability and flight control data, including pilot inputs such as throttle and aileron, and flight sensor data such as latitude and longitude. We conduct a user study on 15 pilots, each flying the same 5 pre-defined routes on a flight simulator. Our results indicate that the flight control data alone are sufficient to provide a near-perfect classification of a pilot's skill level into expert or novice. On the other hand, predicting mental workload is much more difficult, and a combination of flight control and heart rate data is required to obtain an accurate estimate of mental workload. Our findings provide the first step towards a sliding-scale autonomous system for aviation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信