Gröbner基与Church-Rosser交换苏系统的超指数下界

Q4 Mathematics
Dung T. Huynh
{"title":"Gröbner基与Church-Rosser交换苏系统的超指数下界","authors":"Dung T. Huynh","doi":"10.1016/S0019-9958(86)80035-3","DOIUrl":null,"url":null,"abstract":"<div><p>The complexity of the normal form algorithms which transform a given polynomial ideal basis into a Gröbner basis or a given commutative Thue system into a Church-Rosser system is presently unknown. In this paper we derive a double-exponential lower bound (2<sup>2<em>n</em>C</sup>) for the production length and cardinality of Church-Rosser commutative Thue systems, and the degree and cardinality of Gröbner bases.</p></div>","PeriodicalId":38164,"journal":{"name":"信息与控制","volume":"68 1","pages":"Pages 196-206"},"PeriodicalIF":0.0000,"publicationDate":"1986-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0019-9958(86)80035-3","citationCount":"54","resultStr":"{\"title\":\"A superexponential lower bound for Gröbner bases and Church-Rosser commutative thue systems\",\"authors\":\"Dung T. Huynh\",\"doi\":\"10.1016/S0019-9958(86)80035-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The complexity of the normal form algorithms which transform a given polynomial ideal basis into a Gröbner basis or a given commutative Thue system into a Church-Rosser system is presently unknown. In this paper we derive a double-exponential lower bound (2<sup>2<em>n</em>C</sup>) for the production length and cardinality of Church-Rosser commutative Thue systems, and the degree and cardinality of Gröbner bases.</p></div>\",\"PeriodicalId\":38164,\"journal\":{\"name\":\"信息与控制\",\"volume\":\"68 1\",\"pages\":\"Pages 196-206\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0019-9958(86)80035-3\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"信息与控制\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019995886800353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"信息与控制","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019995886800353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 54

摘要

将给定的多项式理想基转化为Gröbner基或将给定的可交换Thue系统转化为Church-Rosser系统的范式算法的复杂性目前是未知的。本文导出了Church-Rosser可交换Thue系统的生产长度和基数,以及Gröbner基的度和基数的双指数下界(22nC)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A superexponential lower bound for Gröbner bases and Church-Rosser commutative thue systems

The complexity of the normal form algorithms which transform a given polynomial ideal basis into a Gröbner basis or a given commutative Thue system into a Church-Rosser system is presently unknown. In this paper we derive a double-exponential lower bound (22nC) for the production length and cardinality of Church-Rosser commutative Thue systems, and the degree and cardinality of Gröbner bases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
信息与控制
信息与控制 Mathematics-Control and Optimization
CiteScore
1.50
自引率
0.00%
发文量
4623
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信