射流冲击喷头的自由面模型

T. Myers, A. Marshall, H. Baum
{"title":"射流冲击喷头的自由面模型","authors":"T. Myers, A. Marshall, H. Baum","doi":"10.3801/iafss.fss.11-1184","DOIUrl":null,"url":null,"abstract":"Understanding the atomization of fire sprinkler sprays fills a critical gap in the modeling of fire suppression systems. Previous research by the authors has shown an instability model coupled with a stochastic transport model can paint most of the sprinkler spray picture, but requires input in the form of thickness and velocity of unstable fluid sheets. The model outlined describes a water jet impinging on a perforated deflector plate as a velocity potential. The free surface separating the jet from the surrounding air takes the form of a vortex sheet with the air assumed to be at rest. Through the use of the Green's function, the fluid velocity potential can be posed as a boundary value problem. Any solution obtained is an exact solution to the inviscid flow equations and the interior flow a solution to the Navier-Stokes equations. The resulting model allows for the determination of the complete flow field over a sprinkler head of arbitrary geometry and input conditions. Knowledge of this flow field provides insight into the impact of sprinkler head geometry and fluid velocity as well as providing the above mentioned inputs for a complete model of fire sprinkler sprays.","PeriodicalId":12145,"journal":{"name":"Fire Safety Science","volume":"13 1","pages":"1184-1195"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Free-Surface Model of a Jet Impinging On a Sprinkler Head\",\"authors\":\"T. Myers, A. Marshall, H. Baum\",\"doi\":\"10.3801/iafss.fss.11-1184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the atomization of fire sprinkler sprays fills a critical gap in the modeling of fire suppression systems. Previous research by the authors has shown an instability model coupled with a stochastic transport model can paint most of the sprinkler spray picture, but requires input in the form of thickness and velocity of unstable fluid sheets. The model outlined describes a water jet impinging on a perforated deflector plate as a velocity potential. The free surface separating the jet from the surrounding air takes the form of a vortex sheet with the air assumed to be at rest. Through the use of the Green's function, the fluid velocity potential can be posed as a boundary value problem. Any solution obtained is an exact solution to the inviscid flow equations and the interior flow a solution to the Navier-Stokes equations. The resulting model allows for the determination of the complete flow field over a sprinkler head of arbitrary geometry and input conditions. Knowledge of this flow field provides insight into the impact of sprinkler head geometry and fluid velocity as well as providing the above mentioned inputs for a complete model of fire sprinkler sprays.\",\"PeriodicalId\":12145,\"journal\":{\"name\":\"Fire Safety Science\",\"volume\":\"13 1\",\"pages\":\"1184-1195\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Safety Science\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.3801/iafss.fss.11-1184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Science","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3801/iafss.fss.11-1184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

了解喷雾器喷雾的雾化可以填补灭火系统建模中的一个关键空白。作者先前的研究表明,一个不稳定模型与一个随机输运模型相结合,可以描绘出大部分喷头的喷雾图像,但需要以不稳定流体片的厚度和速度的形式输入。该模型描述了一个水射流冲击穿孔偏转板作为速度势。在假定空气处于静止状态的情况下,将射流与周围空气分开的自由表面以旋涡片的形式出现。通过使用格林函数,流体速度势可以作为一个边值问题。得到的任何解都是无粘流动方程的精确解,内部流动是Navier-Stokes方程的解。所得到的模型允许在任意几何形状和输入条件的喷头上确定完整的流场。了解该流场可以深入了解喷头几何形状和流体速度的影响,并为完整的消防喷头喷雾模型提供上述输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Free-Surface Model of a Jet Impinging On a Sprinkler Head
Understanding the atomization of fire sprinkler sprays fills a critical gap in the modeling of fire suppression systems. Previous research by the authors has shown an instability model coupled with a stochastic transport model can paint most of the sprinkler spray picture, but requires input in the form of thickness and velocity of unstable fluid sheets. The model outlined describes a water jet impinging on a perforated deflector plate as a velocity potential. The free surface separating the jet from the surrounding air takes the form of a vortex sheet with the air assumed to be at rest. Through the use of the Green's function, the fluid velocity potential can be posed as a boundary value problem. Any solution obtained is an exact solution to the inviscid flow equations and the interior flow a solution to the Navier-Stokes equations. The resulting model allows for the determination of the complete flow field over a sprinkler head of arbitrary geometry and input conditions. Knowledge of this flow field provides insight into the impact of sprinkler head geometry and fluid velocity as well as providing the above mentioned inputs for a complete model of fire sprinkler sprays.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信